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H I G H L I G H T S

� The Pauli paramagnetic suscept-
ibility and electronic heat capacity of
graphene are investigated in two-
band model.

� Green's function formalism is im-
plemented.

� Contributions of s and p orbitals in
the valence band are considered.
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a b s t r a c t

Using a two-band tight-binding Harrison model and Green's function technique, the influences of both
localized s and delocalized π electrons on the density of states, the Pauli paramagnetic susceptibility, and
the heat capacity of a graphene sheet are investigated. We witness an extension in the bandwidth and an
increase in the number of Van-Hove singularities as well. As a notable point, besides the magnetic nature
which includes diamagnetism in graphene-based nanosystems, a paramagnetic behavior associated with
the itinerant π electrons could be occurred. Further, we report a Schottky anomaly in the heat capacity.
This study asserts that the contribution of both s and π electrons play dominant roles in the mentioned
physical quantities.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphene [1] is constructed by covalent chemical bonding of
valence electrons of carbon atoms, localized at atomic positions of
a two-dimensional (2D) hexagonal lattice. Structurally, the π bands
are related to the chemical π bondings of the transversely non-
hybridized pz orbitals out-of-plane, while the remaining valence
orbitals, i.e. s, px and py, create s bonds lying in the graphene plane
with bond angle of 120°. The electronic properties of graphene
could be explained by π bondings in a tight-binding (TB) model [2]

but to explore its full band structure all relevant atomic orbitals
have to be taken into account [3–7].

During last decades, the magnetic susceptibility of diverse
carbon allotropes, particularly the graphene sheet as a newly
synthesized case, has widely been studied [8–16]. The orbital
magnetism in graphene-based systems was first studied for a
graphene monolayer as a simple model to explain the large dia-
magnetism of graphite [12,13]. For instance, qualitative and
quantitative results of the orbital magnetization in graphene and
graphene nanoribbons were obtained by Liu et al. [14]. The tem-
perature dependency of the magnetic susceptibility of graphene
has also been investigated by Peres et al. [15]. A theoretical study
on the orbital magnetism in multilayer graphene has been
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presented through the effective mass approximation by Koshino
and Ando [16]. They found that the monolayer-type sub-band
exists only in odd layers while the bilayer-type sub-band appears
in every layer number. Remarkably, the magnetic susceptibility of
the nanostructured graphene-based systems has been studied by
the authors of Ref. [17].

The electronic contribution of magnetization and specific heat
depend directly on the electronic structure. Basically, the heat
capacity is a quantity which directly reflects the details of the
excitation spectrum. In recent years, the extraordinary thermal
transport properties of low-dimensional systems compared with
macro scales have attracted great attention [18–22]. For example,
the low-energy electronic structure and the heat capacity of gra-
phene strips versus temperature have been investigated by Yi et al.
[18]. They found that its heat capacity is similar to a two-level
system due to the finite width of the conduction and valence
bands. The thermal conductivity of isotopically modified graphene
has experimentally been measured by Chen et al. [21] via the
optothermal Raman technique.

In this theoretical effort, the density of states (DOS), para-
magnetic (PM) susceptibility, and electronic heat capacity of gra-
phene are investigated through s and π bands of TB Harrison
model. In Section 2, our model is introduced and Green's function
formalism is followed in Section 3. Section 4 involves a compar-
ison between the temperature behavior of the remarked quantities
of the system for various contributions of s and p orbitals. The
results, discussion, and conclusion are presented in the last two
sections.

2. Hamiltonian model

We start with the following Harrison's two-center TB Ha-
miltonian model [3–7] for a 2D honeycomb graphene lattice
(Fig. 1):
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where i and j denote the position of the cells, α and β point to the
A or B sub-sites inside the Bravais lattice unit cell (Fig. 1), Nc is the
number of unit cells or equivalently the number of modes in the
first Brillouin zone (FBZ), No displays the number of orbitals at
each atomic site of the graphene plane, ti jμ ν

αβ represents the
amplitude for an electron to hop from orbital μ of sub-site α in
the unit cell i to the orbital ν of sub-site β in the nearest-neighbor

(NN) cell j, cîμ
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(cîμ
α
) indicates the creation (annihilation) operator of

an electron on sub-site α in orbital μ of the unit cell i, and iε μ
α refers

to the on-site energy corresponding to the electronic state with
quantum numbers i, ,α μ{ }. The spherical symmetry of s orbitals
requires the overlap between the NN orbitals of this kind to be
negative, while according to the arrangement of positive and
negative lobes of p p p, ,x y z{ } orbitals, the sign of the overlap of p
orbitals with the NN s or p ones could appropriately be positive or
negative [3–7]. Besides, we have fitted the origin of energy to the
on-site energy of orbital p, i.e. 0p p px y zε ε ε= = = , so the on-site

energy of the orbital s would be a negative quantity [6,7]. It should
be noted that since every graphene's Bravais lattice unit cell
includes N 2a = nonequivalent atomic sites A and B, each with
one s and three p orbitals in the valence levels, each cell
incorporates N N 8a o = orbitals. Conclusively, the Hamiltonian is
represented by an 8�8 matrix constructed on the following set of
orthogonal orbital basis kets of the Hilbert space:
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Just for simplicity, we have used such system of units that all
physical constants (like ℏ) are equal to one.

3. Green's function approach

According to the Hamiltonian and the basis kets introduced in
(2), Green's function of graphene for s and π bands takes the form
of
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in which tτ = ı denotes the imaginary time, and the arrays are
4�4 sub-matrices. Typically, i j, ;AA τ( )μν could be expressed as
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wherein stands for the time
ordering operator. Using the Heisenberg equation and Green's
function method [23,24], the equation of motion for the electrons
in valence bands of graphene sheet would be exploited:
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where I is an 8�8 identity matrix, iδ ℓ (δij) indicates the Kronecker
symbol while δ τ( ) refers to the Dirac δ-function. Applying the
imaginary time Fourier transformation,
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with T 1β = − being the inverse of temperature and
n2 1 /n βω π= ( + ) being the fermionic Matsubara frequencies with

integer numbers n. The analytical continuation of Eq. (7) by
Enω ηı → = + ı (η is an infinitesimal positive value) leads to the

following equation:
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Fig. 1. Geometry of graphene lattice with interatomic distance a0 and a a,1 2{ } as
primitive vectors. Dashed lines illustrate the Bravais lattice unit cell including A and
B sub-sites. The vectors r01, r02, r03 and r04 connect a cell to its NNs.
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