Contents lists available at ScienceDirect

Physica E

journal homepage: www.elsevier.com/locate/physe

Magnetic susceptibility and heat capacity of graphene in two-band Harrison model

1

Hamze Mousavi^{a,*}, Mehran Bagheri^b, Jabbar Khodadadi^a

^a Department of Physics, Razi University, Kermanshah, Iran

^b Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113, Iran

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- The Pauli paramagnetic susceptibility and electronic heat capacity of graphene are investigated in twoband model.
- Green's function formalism is implemented.
- Contributions of *s* and *p* orbitals in the valence band are considered.

ARTICLE INFO

Article history: Received 15 February 2015 Received in revised form 27 June 2015 Accepted 29 June 2015 Available online 2 July 2015 Keywords: Graphene

Susceptibility Heat Capacity Two-Band Harrison model

1. Introduction

Graphene [1] is constructed by covalent chemical bonding of valence electrons of carbon atoms, localized at atomic positions of a two-dimensional (2D) hexagonal lattice. Structurally, the π bands are related to the chemical π bondings of the transversely non-hybridized p_z orbitals out-of-plane, while the remaining valence orbitals, i.e. *s*, p_x and p_y , create σ bonds lying in the graphene plane with bond angle of 120°. The electronic properties of graphene could be explained by π bondings in a tight-binding (TB) model [2]

* Corresponding author. Fax: +98 83 3427 4556. E-mail address: hamze.mousavi@gmail.com (H. Mousavi).

http://dx.doi.org/10.1016/j.physe.2015.06.032 1386-9477/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

Using a two-band tight-binding Harrison model and Green's function technique, the influences of both localized σ and delocalized π electrons on the density of states, the Pauli paramagnetic susceptibility, and the heat capacity of a graphene sheet are investigated. We witness an extension in the bandwidth and an increase in the number of Van-Hove singularities as well. As a notable point, besides the magnetic nature which includes diamagnetism in graphene-based nanosystems, a paramagnetic behavior associated with the itinerant π electrons could be occurred. Further, we report a Schottky anomaly in the heat capacity. This study asserts that the contribution of both σ and π electrons play dominant roles in the mentioned physical quantities.

© 2015 Elsevier B.V. All rights reserved.

but to explore its full band structure all relevant atomic orbitals have to be taken into account [3–7].

During last decades, the magnetic susceptibility of diverse carbon allotropes, particularly the graphene sheet as a newly synthesized case, has widely been studied [8–16]. The orbital magnetism in graphene-based systems was first studied for a graphene monolayer as a simple model to explain the large diamagnetism of graphite [12,13]. For instance, qualitative and quantitative results of the orbital magnetization in graphene and graphene nanoribbons were obtained by Liu et al. [14]. The temperature dependency of the magnetic susceptibility of graphene has also been investigated by Peres et al. [15]. A theoretical study on the orbital magnetism in multilayer graphene has been presented through the effective mass approximation by Koshino and Ando [16]. They found that the monolayer-type sub-band exists only in odd layers while the bilayer-type sub-band appears in every layer number. Remarkably, the magnetic susceptibility of the nanostructured graphene-based systems has been studied by the authors of Ref. [17].

The electronic contribution of magnetization and specific heat depend directly on the electronic structure. Basically, the heat capacity is a quantity which directly reflects the details of the excitation spectrum. In recent years, the extraordinary thermal transport properties of low-dimensional systems compared with macro scales have attracted great attention [18–22]. For example, the low-energy electronic structure and the heat capacity of graphene strips versus temperature have been investigated by Yi et al. [18]. They found that its heat capacity is similar to a two-level system due to the finite width of the conduction and valence bands. The thermal conductivity of isotopically modified graphene has experimentally been measured by Chen et al. [21] via the optothermal Raman technique.

In this theoretical effort, the density of states (DOS), paramagnetic (PM) susceptibility, and electronic heat capacity of graphene are investigated through σ and π bands of TB Harrison model. In Section 2, our model is introduced and Green's function formalism is followed in Section 3. Section 4 involves a comparison between the temperature behavior of the remarked quantities of the system for various contributions of *s* and *p* orbitals. The results, discussion, and conclusion are presented in the last two sections.

2. Hamiltonian model

We start with the following Harrison's two-center TB Hamiltonian model [3–7] for a 2D honeycomb graphene lattice (Fig. 1):

$$\hat{\mathcal{H}} = \sum_{i,j}^{N_c} \sum_{\alpha,\beta}^{N_a} \sum_{\mu,\nu}^{N_b} t_{i\mu j\nu}^{\alpha\beta} \hat{c}_{j\nu}^{\alpha\dagger} + \sum_{i}^{N_c} \sum_{\alpha}^{N_a} \sum_{\mu}^{N_b} \varepsilon_{i\mu}^{\alpha} \hat{c}_{i\mu}^{\alpha\dagger} \hat{c}_{i\mu}^{\alpha}, \tag{1}$$

where *i* and *j* denote the position of the cells, α and β point to the *A* or *B* sub-sites inside the Bravais lattice unit cell (Fig. 1), N_c is the number of unit cells or equivalently the number of modes in the first Brillouin zone (FBZ), N_o displays the number of orbitals at each atomic site of the graphene plane, $t_{ijj\nu}^{\alpha\beta}$ represents the amplitude for an electron to hop from orbital μ of sub-site α in the unit cell *i* to the orbital ν of sub-site β in the nearest-neighbor (NN) cell *j*, $\hat{c}_{i\mu}^{\alpha\dagger}$ ($\hat{c}_{i\mu}^{\alpha}$) indicates the creation (annihilation) operator of an electron on sub-site α in orbital μ of the unit cell *i*, and $\varepsilon_{i\mu}^{\alpha}$ refers

Fig. 1. Geometry of graphene lattice with interatomic distance a_0 and $\{\mathbf{a}_1, \mathbf{a}_2\}$ as primitive vectors. Dashed lines illustrate the Bravais lattice unit cell including *A* and *B* sub-sites. The vectors \mathbf{r}_{01} , \mathbf{r}_{02} , \mathbf{r}_{03} and \mathbf{r}_{04} connect a cell to its NNs.

to the on-site energy corresponding to the electronic state with quantum numbers { i, α, μ }. The spherical symmetry of s orbitals requires the overlap between the NN orbitals of this kind to be negative, while according to the arrangement of positive and negative lobes of { p_x, p_y, p_z } orbitals, the sign of the overlap of p orbitals with the NN s or p ones could appropriately be positive or negative [3–7]. Besides, we have fitted the origin of energy to the on-site energy of orbital p, i.e. $e_{p_x} = e_{p_y} = e_{p_z} = 0$, so the on-site energy of the orbital s would be a negative quantity [6,7]. It should be noted that since every graphene's Bravais lattice unit cell includes $N_a = 2$ nonequivalent atomic sites A and B, each with one s and three p orbitals in the valence levels, each cell incorporates $N_a N_o = 8$ orbitals. Conclusively, the Hamiltonian is represented by an 8×8 matrix constructed on the following set of orthogonal orbital basis kets of the Hilbert space:

$$\{|\Phi_{is}^{A}\rangle, |\Phi_{ip_{x}}^{A}\rangle, |\Phi_{ip_{y}}^{A}\rangle, |\Phi_{ip_{z}}^{A}\rangle, |\Phi_{is}^{B}\rangle, |\Phi_{ip_{x}}^{B}\rangle, |\Phi_{ip_{y}}^{B}\rangle, |\Phi_{ip_{y}}^{B}\rangle\}.$$

$$(2)$$

Just for simplicity, we have used such system of units that all physical constants (like \hbar) are equal to one.

3. Green's function approach

According to the Hamiltonian and the basis kets introduced in (2), Green's function of graphene for σ and π bands takes the form of

$$\begin{pmatrix} (\mathcal{G}_{\mu\nu}^{AA}(i,j;\tau))_{4\times4} & (\mathcal{G}_{\mu\nu}^{AB}(i,j;\tau))_{4\times4} \\ (\mathcal{G}_{\mu\nu}^{BA}(i,j;\tau))_{4\times4} & (\mathcal{G}_{\mu\nu}^{BB}(i,j;\tau))_{4\times4} \end{pmatrix},$$
(3)

in which $\tau = {}_{1}t$ denotes the imaginary time, and the arrays are 4×4 sub-matrices. Typically, $\mathcal{G}^{AA}_{\mu\nu}(i, j; \tau)$ could be expressed as

$$\mathcal{G}_{\mu\nu}^{AA}(i,j;\tau) = \begin{pmatrix} G_{2X}^{AA}(i,j;\tau) & G_{SP_{X}}^{AA}(i,j;\tau) & G_{SP_{X}}^{AA}(i,j;\tau) & G_{SP_{Z}}^{AA}(i,j;\tau) \\ G_{P_{X}S}^{AA}(i,j;\tau) & G_{P_{X}P_{X}}^{AA}(i,j;\tau) & G_{P_{X}P_{Y}}^{AA}(i,j;\tau) & G_{P_{X}P_{Y}}^{AA}(i,j;\tau) \\ G_{P_{Y}S}^{AA}(i,j;\tau) & G_{P_{Y}P_{X}}^{AA}(i,j;\tau) & G_{P_{Y}P_{Y}}^{AA}(i,j;\tau) & G_{P_{Y}P_{Z}}^{AA}(i,j;\tau) \\ G_{P_{Z}S}^{AA}(i,j;\tau) & G_{P_{Z}P_{X}}^{AA}(i,j;\tau) & G_{P_{Z}P_{Y}}^{AA}(i,j;\tau) & G_{P_{Z}P_{Y}}^{AA}(i,j;\tau) \\ \end{pmatrix},$$
(4)

with $G^{\alpha\beta}_{\mu\nu}(i, j; \tau) = - \langle \mathcal{T}^{\beta\alpha}_{i\mu}(\tau) \hat{C}^{\beta\dagger}_{j\nu}(0) \rangle$ wherein \mathcal{T} stands for the time ordering operator. Using the Heisenberg equation and Green's function method [23,24], the equation of motion for the electrons in valence bands of graphene sheet would be exploited:

$$\sum_{\ell} \left[\left(-\mathbf{I} \frac{\partial}{\partial \tau} + \boldsymbol{\varepsilon}_i \right) \delta_{i\ell} + \mathbf{t}_{i\ell} \right] \mathbf{G}(\ell, j; \tau) = \delta(\tau) \delta_{ij} \mathbf{I},$$
(5)

where **I** is an 8×8 identity matrix, $\delta_{i\ell}$ (δ_{ij}) indicates the Kronecker symbol while $\delta(\tau)$ refers to the Dirac δ -function. Applying the imaginary time Fourier transformation,

$$\mathbf{G}(\ell, j; \tau) = \frac{1}{\beta} \sum_{n} e^{-i\omega_n \tau} \mathbf{G}(\ell, j; i\omega_n),$$
(6)

to Eq. (5) yields

$$\sum_{\ell} \left[(\imath \omega_n \mathbf{I} + \boldsymbol{\varepsilon}_i) \delta_{i\ell} + \mathbf{t}_{i\ell} \right] \mathbf{G}(\ell, j; \imath \omega_n) = \delta_{ij} \mathbf{I},$$
⁽⁷⁾

with $\beta = T^{-1}$ being the inverse of temperature and $\omega_n = \pi (2n + 1)/\beta$ being the fermionic Matsubara frequencies with integer numbers *n*. The analytical continuation of Eq. (7) by $\iota\omega_n \rightarrow E = \mathcal{E} + \iota\eta$ (η is an infinitesimal positive value) leads to the following equation:

$$\sum_{\ell} \left[(E\mathbf{I} + \boldsymbol{\varepsilon}_i) \delta_{i\ell} + \mathbf{t}_{i\ell} \right] \mathbf{G}(\ell, j; E) = \delta_{ij} \mathbf{I}.$$
(8)

Download English Version:

https://daneshyari.com/en/article/7934079

Download Persian Version:

https://daneshyari.com/article/7934079

Daneshyari.com