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H I G H L I G H T S

� The exciton related nonlinear optical
properties of a quantum dot is cal-
culated analytically.

� The roles of confinement, Coulomb
interaction and electric field are
studied.

� No assumptions are made about the
strength of confinement.

G R A P H I C A L A B S T R A C T

Non-linear refractive index change as a function of photon energy, with and without Coulomb inter-
action, F¼25 kV/cm and I¼0.5�1010 W/m2.
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a b s t r a c t

The nonlinear optical properties of an exciton in a spherical quantum dot (QD) is studied analytically. The
nonlinear optical coefficients are calculated within the density matrix formalism. The electronic problem
is solved within the effective mass approximation. The contributions from the competing effects of the
confinement, the Coulomb interaction, and the applied electric field are calculated and compared with
each other. We have made no assumptions about the strength of the confinement. We concentrate the
effect of the Coulomb interaction. Our results may provide an input for optimization of the nonlinear
optical coefficients.

& 2015 Published by Elsevier B.V.

1. Introduction

The study of the exciton related nonlinear optical properties of
quantum dots is of great importance since it is technologically
relevant and it provides challenging physics [1–3].

There are a few important factors that affect the linear and
nonlinear optical properties. The first is the confinement of the
exciton. The exciton in a QD is not free to move in any directions.
This gives way to the quantization of the electronic levels. The
second important factor is the Coulomb interaction between the
electron and the hole. In the strong confinement limit this inter-
action is neglected or treated as a perturbation. This is regularly

done in many earlier investigations [4–6]. However, this interac-
tion is important and it is this interaction that forms the exciton at
the first place. The third factor is the presence of the externally
applied electric and magnetic fields. They influence the electronic
structure and thus the optical properties. The fourth one is the
intensity of the incoming photons, which has a direct effect on the
nonlinear contributions. One can also investigate other factors
such as the presence of impurities, strain, temperature etc. But in
this work, we consider the effects of the confinement, the Cou-
lomb interaction and the applied electric field on the exciton re-
lated optical properties of a spherical quantum dot.

There have been a number of investigations of the problem of
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exciton-related nonlinear optical properties of a QD [7–20]. The
majority of these works are either numerical or considering only
the strong confinement limit. It is well understood that the non-
linear optical coefficients are considerably larger when excitonic
effects are taken into account. Some of the previous works make
an approximation about the shape of the dot. Some take it as one-
dimensional [7,13,17], two-dimensional [8,16], disk-like [10,11,15],
or semi-spherical [9]. This may simplify the calculation of the
electronic structure of the QD. A number of investigations consider
only the strong confinement limit where the Coulomb interaction
may be neglected [7,8,10,13]. This obviously simplifies the calcu-
lation. There is also a scatter in the nonlinear optical coefficients
taken into consideration. Some of the works consider only the
refractive index change, and/or the optical rectification coefficient.

The computational method used also varies from the direct
numerical matrix diagonalization to a variational calculation. The
Coulomb potential is considered as a perturbation by Wenfang
Xie's group [21–23]. Their work needs to be extended to more
nonlinear optical coefficients and emphasis should be given to the
effects of the Coulomb interaction.

It is thus well established, through a combination of frag-
mented studies that the nonlinear optical properties of QDs de-
pend mainly on the dot size, external fields and the incident
photon intensity. We now need an analytical calculation that may
show the various competing effects clearly.

In this work, no assumptions are made about the strength of
the confinement. An analytical solution is done for the electronic
structure of the QD, by including a parabolic potential to describe
the confinement, and an external electric field in the Hamiltonian.
We have considered small electric fields and treated the Coulomb
term as a perturbation [24]. The main aim of the paper is to find
out the effect of the Coulomb interaction on the nonlinear optical
properties of a QD in both strong and weak confinement limits.

2. Theoretical framework

The Hamiltonian for an exciton in a spherical QD with a para-
bolic potential, within the effective mass approximation is
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where oω defines the parabolic confining potential. e /2γ = ϵ is a
positive constant, e is the absolute value of the electron charge, ϵ is

the dielectric constant and F
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is the external electric field applied
in z direction. The details are given in our earlier paper [21]. The
eigen values and the corresponding eigen functions are
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and m m M/e hμ = is the electron–hole reduced mass.

We consider an optical radiation of angular frequency ω applied
to the system with the polarization along the growth direction.
The incident field can be written as

F t F i tExp
5j
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where the summation is over all frequencies. Using the density
matrix formalism, one can write the first-and the third-order
susceptibilities as [25]
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and the second-order nonlinear optical rectification coefficient is
given by [26–28]
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where ,ij ijμ μ ′ are the matrix elements of the unperturbed and the
perturbed electric dipole moments. The change in the linear, the
third-order nonlinear and the total refractive index (RI) due to the
incident field are given by
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Here, I is the intensity of the incident field, nr is the refractive
index, c is the speed of light and Γ0¼1/T0, where T0 is the re-
laxation time.

The simplicity of the expressions obtained is solely due to the
parabolic confinement assumed and the resulting harmonic os-
cillator wave functions considered in this work. It is well known
that the first-order perturbation treatment within the customary
infinite-barrier confinement leads to an infinite series when one
evaluates the first-order correction to the unperturbed exciton
wave function.

3. Results and discussion

The numerical values are chosen for a typical GaAs/AlxGa1�x As
system with x 0.3= . The input parameters are taken as, the elec-
tron density 5.0 10 m ,s

22 3ρ = × − reduced mass m0.0549 oμ = ,
m m0.067 ,e o= m m0.340h o= , where mo is the free electron mass.
The relaxation time is T 0.14 ps,o = the dielectric constant as

12.4ϵ = .
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