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a b s t r a c t

We present a simple quantum-mechanical derivation of correlation function of Langevin sources in the
semiclassical Boltzmann–Langevin equation. The specific case of electron–phonon scattering is con-
sidered. It is shown that the assumption of weak scattering leads to the Poisson nature of the scattering
fluxes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonequilibrium electrical noise in mesoscopic systems was
always the subject of primary interest for Markus Büttiker. The
famous Landauer–Büttiker formula for the shot noise in quantum-
coherent conductors became a cornerstone of modern theory of
fluctuations [1]. This formula was successfully applied to the cal-
culations of shot noise in different mesoscopic systems with
noninteracting electrons ranging from double-barrier resonant
tunnel diodes [2] to quantum-coherent metallic diffusive wires [3].
However this method has difficulty in describing interacting
electrons or systems with dephasing. To circumvent it, one has to
introduce dephasing probes [4,5], i.e. fictitious probes with vol-
tages chosen such that they do not affect the electrical current but
allow a replacement of quantum-coherent electrons in the con-
ductor by electrons from reservoirs with a random phase. Yet the
properties of the dephasing probes have to be somehow related to
the rate of actual microscopic scattering processes.

An alternative method for calculating the electrical noise in
conductors in the limit of a large number of quantum channels is
the Boltzmann–Langevin approach proposed by Kogan and
Shul'man in 1969 [6]. In this approach, the fluctuations of current
and any other observable quantities are expressed in terms of the
fluctuations of semiclassical distribution function, which obey the
Boltzmann equation with a Langevin source in the right-hand side.
This method appeared to be very efficient when calculating the
hot-electron noise in diffusive metallic wires [7,8], frequency-de-
pendent shot noise in metallic structures in the presence of ex-
ternal screening gates [9,10], and even the noise in hybrid super-
conductor – normal-metal systems at voltages much higher than

the Thouless energy [11]. More recently, it was extended to the
case of spin-flip scattering in ferromagnetic spin valves [12] and
applied to Coulomb drag in clean double-layer systems [13]

The key point in the Boltzmann–Langevin approach is the de-
rivation of the correlation function of Langevin sources. Kogan and
Shul'man derived it assuming that the noise arises due to the
randomness of electron scattering by impurities and phonons. It
was also assumed that all scattering events are independent,
hence the scattering of electrons between a pair of states at a given
space point presents a Poisson process, whose spectral density is
proportional to its average rate.

Surprisingly, there were few attempts to derive the correlation
function of Langevin sources directly from quantum-mechanical
principles. In paper [14], this correlation function was calculated
using a sophisticated extension of Keldysh diagrammatic techni-
que, which involved time-ordering on a four-branch temporal
contour. The current paper presents a much simpler quantum-
mechanical derivation of this quantity, which does not require a
diagrammatic technique.

2. The general expression

The standard semiclassical distribution function of electrons
n trp ( ) presents the statistical average of the number of electrons in
an element of phase space p x3 3Δ × Δ divided by the number of
quantum states in this element N p x / 23 3 3πΔ = Δ Δ ( ) , which is
centered at point p r,( ). This implies that the statistical averaging is
performed on top of the coarse-grained averaging [15]. Once the
distribution function is known, one may easily calculate different
measurable quantities like charge or current density as linear
functionals of it. It can be shown in many different ways [15–17]
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that this distribution function obeys the well-known Boltzmann
equation:
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where Icol is the collision integral that accounts for the electron
scattering by impurities and phonons or electron–electron scat-
tering. This equation is valid provided that the semiclassical ap-
proximation holds. First, the characteristic length of spatial var-
iation of np must be larger than the microscopic scale responsible
for the scattering p/ c , where pc is the characteristic momentum of
an electron. Second, both the characteristic time of its variation
and the inverse scattering rate must be larger than the char-
acteristic time of the collision with impurity or phonon / cε , where

cε is the characteristic energy of an electron.
Along with the average distribution function, one may also be

interested in the correlation function of its fluctuations
n t n tr rp p1 1 2 21 2δ δ〈 ( ) ( )〉, where the fluctuations n n np p pi i iδ = − ¯ are

only coarse-grained-averaged, and the statistical averaging is ap-
plied to their product [18]. This quantity immediately gives the
correlation functions of different observables. To calculate it, let us
take a closer look at Eq. (1). Apart from the time derivative, the
terms in the left-hand side describe the deterministic motion of
electrons in the phase space due to smooth spatial variations of
the distribution function and electrical potential. In contrast to
this, the collision integral describes quantum-mechanical transi-
tions of electrons between the states with different momentum,
which are assumed to be local in space and time. These transitions
are random and should be considered as the source of noise if the
semiclassical description is used.

As the structure of the Boltzmann equation without the drift
terms resembles the equation of motion of the Brownian particle,
one may write the corresponding Langevin equation for the dis-
tribution function. To this end, np¯ should be replaced by np and a
random Langevin source J trext

pδ ( ) with zero average should be
added [19] to the right-hand side of Eq. (1). As the duration of an
electron collision with an impurity or phonon is much smaller
than characteristic time of variation of np, this source may be as-
sumed to be delta correlated in time. Similarly, it should be delta
correlated in space because of the local nature of the collisions.
The momentum-dependent coefficient of these delta functions
may be calculated as follows [20]. Choose an interval of time tΔ
much longer than the collision time / cε but so short that the
distribution function cannot significantly change during this per-
iod. The direct integration of the Boltzmann–Langevin equation
over time gives the increment of np:

n n t t n t d J tr r r, , . 2
t

ext
p p p p0

∫ τ δ τΔ ≡ ( + Δ ) − ( ) = ( + ) ( )
Δ

Hence the correlation function of two such increments is given by
a double integral:
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The delta function of 1 2τ τ− eliminates one of the integrations, and
the other reduces to a multiplication by tΔ . Hence it follows from
Eq. (3) that
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This is our basic formula for calculating the correlation function of
Langevin sources.

3. Equations of motion for the operators

To carry out the calculations to the end, we have to calculate
the ratio in Eq. (4) using quantum mechanics. Consider the par-
ticular case of electron–phonon scattering in an elementary vo-
lume of size xΔ much smaller than the characteristic length at
which the average distribution function or the electrical potential
essentially changes but much larger than p/ c. This allows us to
describe the scattering with a locally uniform Hamiltonian. The

Hamiltonian of the system H H V0
^ = ^ + ^ is the sum of the non-

interacting part

H a a b b
5p

p p p
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k k k0 ∑ ∑ε ω^ = ^ ^ + ^ ^
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and the part describing the electron–phonon interaction
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where Vk are the matrix elements of electron–phonon interaction,

and ap
^ and bk

^ are the annihilation operators for electrons and
phonons, respectively. The time-dependent occupation-number
operator n a ap p p

^ = ^ ^+
obeys the Heisenberg equation [21]:

dn
dt

i
H n t, . 7

p
p
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As n H, 0p 0[^ ^ ] = , the time dependence of this operator is de-
termined only by the weak electron–phonon coupling and may be
considered as slow. Therefore Eq. (7) may be solved by iterations

in V̂ . To this end, we perform a unitary transformation of all
operators:

A t e A t e, , 8i H t i H t/ /0 0τ˜ ( ) = ^( ) ( )τ τ−( ) ^ ( ) ( ) ^ ( )

which brings Eq. (7) to the form
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If the time interval tΔ is much shorter than the relaxation time of
the distribution function due to the collisions, the increment of np˜
may be calculated to the second order in Ṽ , and then the trans-
formation inverse to Eq. (8) gives
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and all fermionic and bosonic operators are taken at time t. The
density matrix of the system is assumed to be factorized into the
electron and phonon parts, which are diagonal in the same re-

presentation as H0
^ . Therefore upon averaging Eq. (10), the first

summand vanishes and in the second summand, only diagonal
terms are left. The average products of four fermionic operators
are decoupled into products of pair averages, e.g.
a a a a n n1p k p q k q p k q q p,δ〈^ ^ ^ ^ 〉 = ^ ( − )+

+
−

+
+ . As a result, all the argu-

ments of exponents are proportional to the difference τ τ′ − ″, and

K.E. Nagaev / Physica E 74 (2015) 461–464462



Download	English	Version:

https://daneshyari.com/en/article/7934266

Download	Persian	Version:

https://daneshyari.com/article/7934266

Daneshyari.com

https://daneshyari.com/en/article/7934266
https://daneshyari.com/article/7934266
https://daneshyari.com/

