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a b s t r a c t

We study the average energy – or particle – density of waves inside disordered 1D multiply-scattering
media. We extend the transfer-matrix technique that was used in the past for the calculation of the
intensity beyond the sample to study the intensity in the interior of the sample by considering the
transfer matrices of the two segments that form the entire waveguide. The statistical properties of the
two disordered segments are found using a maximum-entropy ansatz subject to appropriate constraints.
The theoretical expressions are shown to be in excellent agreement with 1D transfer-matrix simulations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Studies of the scaling of the average transmission and the full
probability distribution of transmission and conductance through
disordered media at various degrees of spatial averaging over the
output and input surface have played a central role in localization
and mesoscopic physics [1–6]. Interest in the profiles of energy or
particle density inside random open samples, which has been of
great current interest [7–12], goes back even further. In the work
of Ref. [13] a detailed calculation is reported in which successive
averaging over impurities is performed to yield the result of Eq.
(26) of that reference for the average intensity inside the sample. A
further generalization of this result (allowing for impedance mis-
match at the generator and the load, in the electric-circuit termi-
nology used by the authors), which makes use of the notion of
transfer matrices, is given in Ref. [14].

It is interesting to recall that for a classical system, the intensity
I(z) in the interior of a diffusing sample falls linearly within the
sample, as required by Fick's law of particle diffusion; this yields a
constant diffusion coefficient D0. A first-order correction to the
diffusion equation due to localization effects was obtained recently
by introducing a one-loop weak localization correction together
with the assumption of the self-consistency of this approximation
[15,16]. This has yielded a generalized diffusion equation with a
position-dependent diffusion coefficient, D(x). This diffusion

coefficient is increasingly renormalized with increasing depth into
the sample by the destructive interference of waves returning to
points inside the medium. Good agreement with this self-con-
sistent theory [17] is obtained in simulations and in optical mea-
surements in a multichannel slot in a periodic 2D structure. When
extended to the time domain [10], the self-consistent theory gives
good agreement [18] with the transmitted pulse profile for ultra-
sound in the localization transition. For more deeply localized
samples, however, microwave transmission at long times was
dramatically slowed down because of the increasing contribution
of long-lived quasi-normal modes to transmission at late times
[19]. An exact theory beyond the single-loop approximation has
been developed based on the supersymmetry approach [20]. The
problem of an inhomogeneous diffusion coefficient dependent on
system size has been discussed recently in Ref. [21], based on the
results of Ref. [13].

An alternative approach to the statistical properties of disordered
conductors based on a maximum-entropy ansatz was presented in
detail in Ref. [22], where an equation governing these properties, the
Dorokhov–Mello–Pereyra–Kumar (DMPK) equation, is derived using
this method. In this approach, the disordered system is assumed to
contain a large number of very weak scatterers: this was called the
dense-weak-scattering limit. It is expected that in this limit the
maximum-entropy ansatz will give results largely independent of the
microscopic details. The transfer matrix is particularly useful in this
context due to its multiplicative property. The result is thus a ran-
dom-matrix theory (RMT) of disordered systems, in which one stu-
dies an ensemble of transfer matrices.
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To the best of our knowledge, RMT has not been widely used to
explore the statistics of propagation inside random media. One
exception is Ref. [14] which, in the limit of uncorrelated disorder,
finds an exact solution to the problem. Ref. [13] uses, instead, re-
cursive relations and an induction method. Ref. [21] makes use of
the results of Ref. [13] to compute the average intensity inside the
sample.

In the present contribution, we develop an approach based on
the DMPK equation mentioned above to find the average intensity
profile inside random 1D samples. As we indicated, the method
based on a maximum-entropy ansatz, although not exact, is ex-
pected to give results largely independent of the microscopic de-
tails. These calculations are in excellent agreement with computer
simulations. In our opinion, the interest of the present point of
view lies in the conceptual simplicity of the maximum-entropy
approach, and the possibility of extending the analysis to other
quantities of physical interest; it may provide an opening to cal-
culate the average profile of energy density inside 1D or quasi-1D
samples for transmission eigenchannels with specified values of
transmission. These profiles were recently found in computer si-
mulations [12]. The profiles were found to have a form related to
the auxiliary localization lengths proposed by Dorokhov [5]. The
structure of these profiles is consistent with the generalized dif-
fusion equation with a position dependent diffusion coefficient
and appropriately chosen source term and boundary conditions
[12]. Since it is possible to manipulate the incident profiles of
classical waves, the prospect exists of controlling the energy
density inside random systems.

The paper is organized as follows. In Section 2 we construct an
expression for the intensity inside a 1D sample, when incidence is
from the left of the sample. Using the maximum-entropy ansatz
outlined above, we average this result over an ensemble of dis-
ordered configurations to obtain our central result, Eq. (11a) be-
low. Excellent agreement is found in a comparison of these results
with computer simulations. Discussion of these results and per-
spectives for future research are presented in Section 3. In order
not to interrupt the flow of the presentation in the main text, two
appendices containing mathematical details have been added.

2. The intensity inside a 1D waveguide

Consider the problem of scattering by a one-dimensional (1D)
random distribution of scatterers, as illustrated in Fig. 1. This si-
tuation may arise in a Quantum Mechanical (QM) problem de-
scribing electronic scattering in a disordered conductor, or, more
generally, in a wave-scattering problem in a disordered waveguide
supporting a single transverse mode, or for a plane wave im-
pinging upon a random layered medium. In what follows, we shall
refer specifically to the first type of problem and use the QM no-
menclature, although the notions from both fields can be used
interchangeably.

The amplitude of the plane wave incident from the left is taken
to be 1; the effect of the scattering process is to produce a reflected
wave with amplitude r on the left of the whole system, and a
transmitted wave on the right, with amplitude t.

Inside the conductor, a distance z from the left side of the
sample, the wave function consists of a wave travelling to the
right, with amplitude a, and a wave travelling to the left, with
amplitude b, as also shown in Fig. 1. As described in the In-
troduction, the goal is to find the average intensity of the wave at
the point z inside the conductor.

We express the transfer matrices of the two portions of the
waveguide as
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We invert this equation to find a and b, making use of the relation
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where the transmission amplitude t can be expressed as

t
1 1

.
52 1 2 1α α α β β

= =
+ ( )⁎ ⁎ ⁎ ⁎

The intensity inside the gap is then given by the equivalent ex-
pressions
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Using the polar representation defined in Appendix A.1, we can
write the functions appearing in Eqs. (6) as
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The above expressions refer to one sample, i.e., to one config-
uration of disorder. Making the assumption of uncorrelated dis-
order, the various quantities referring to the two sections that
form the full sample are statistically independent of one another.

The average over an ensemble of configurations of the intensity
I M M,z 1 2( ) may be computed using the probability distribution of
the transfer matrices for the two sections of the waveguide, i.e.,
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Fig. 1. The scattering problem associated with the 1D disordered waveguide de-
scribed in the text. The waveguide has length L and can support one propagating
mode, or channel. Indicated are the amplitudes of the incident, transmitted and
reflected waves at either end of the waveguide. A small gap is opened at the point z
inside the sample, where the amplitudes of the waves travelling to the right and
left are also shown. The transfer matrices M1, M2 of the two parts of the sample are
also indicated.
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