
Measuring the Luttinger liquid parameter with shot noise

J.K. Kühne a,b, I.V. Protopopov b,c,n, Y. Oreg d, A.D. Mirlin a,b,e

a Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
b Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
c L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow, Russia
d Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
e Petersburg Nuclear Physics Institute, 188300 St. Petersburg, Russia

H I G H L I G H T S

� We explore the low-frequency noise of interacting electrons in one dimension.
� The system is driven out of equilibrium by a QPC with an applied voltage.
� A second QPC serves to explore the statistics of outgoing electrons.
� Low-frequency noise in such a setup allows to measure the Luttinger liquid constant.
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a b s t r a c t

We explore the low-frequency noise of interacting electrons in a one-dimensional structure (quantum
wire or interaction-coupled edge states) with counterpropagating modes, assuming a single channel in
each direction. The system is driven out of equilibrium by a quantum point contact (QPC) with an applied
voltage, which induces a double-step energy distribution of incoming electrons on one side of the device.
A second QPC serves to explore the statistics of outgoing electrons. We show that measurement of a low-
frequency noise in such a setup allows one to extract the Luttinger liquid constant K which is the key
parameter characterizing an interacting 1D system. We evaluate the dependence of the zero-frequency
noise on K and on parameters of both QPCs (transparencies and voltages).

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The physics of interacting electrons in one dimension (1D) is
profoundly different from that in higher dimensions. It is well
known that the correspondence between interacting electrons and
free fermionic quasiparticles, which is in the core of Landau's
Fermi-liquid theory, breaks down in 1D. The resulting strongly
correlated state, known as the Luttinger liquid (LL), cannot be
treated by conventional Fermi-liquid methods. Fortunately, there
exists an extremely powerful approach to the problem, the boso-
nization technique [1–6]. It describes the low-energy sector of the
theory in terms of density fluctuations, which are, under the
simplest circumstances, non-interacting bosons.

A key parameter invoked in the bosonization description of a LL
state is the interaction constant K. This dimensionless parameter

gives an effective measure of the strength of the interaction be-
tween the electrons, with K¼1 corresponding to a non-interacting
Fermi gas, K 1< to repulsion, and K 1> to attraction. The LL
constant K controls the behavior of various physical properties of
the system [3], including, e.g., the scaling of the tunneling density
of states away from the wire ends (TDOS) [7], K K1 /22ν (ϵ) ∝ |ϵ|( − ) , the
temperature-dependence of the conductance through a tunnel
barrier in a Luttinger liquid [8], G T T K K2 1 /( ) ∝ ( − ) , and the tem-
perature scaling of the conductivity of a disordered interacting
wire [9]. There exists by now a rich variety of experimental rea-
lizations of LLs with fermionic constituent particles, including
semiconductor, metallic, and polymer nanowires [10], carbon na-
notubes [11], edge states of 2D topological insulators [12], and
cold-atom systems [13].

Further, edges of quantum Hall systems [14–16] give rise to
chiral LLs with only one propagation direction. When two such
edges with opposite chirality are coupled by interaction, an arti-
ficial “wire” emerges [17,18]. Properties of LL structures are probed
in a growing number of sophisticated experiments, in partic-
ular under strongly non-equilibrium conditions. A quantitative

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

http://dx.doi.org/10.1016/j.physe.2015.08.010
1386-9477/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author at: Institut für Theorie der Kondensierten Materie,
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany.

E-mail address: ipro@tkm.uni-karlsruhe.de (I.V. Protopopov).

Physica E 74 (2015) 651–658

www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2015.08.010
http://dx.doi.org/10.1016/j.physe.2015.08.010
http://dx.doi.org/10.1016/j.physe.2015.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.08.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.08.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2015.08.010&domain=pdf
mailto:ipro@tkm.uni-karlsruhe.de
http://dx.doi.org/10.1016/j.physe.2015.08.010


interpretation of experimental findings requires the knowledge of
the LL parameter K of the studied system by an additional in-
dependent measurement of K.

Let us consider a typical experimental setup where a 1D con-
ductor is connected to the outside world by leads. One possibility
to access the value of K is to measure the power-law behavior of
the TDOS by exploring the tunneling into the Luttinger liquid. This
requires, however, an introduction of an additional probe to the
interacting wire and is not simple experimentally. In addition, the
tunneling characteristics may be affected by the interaction of the
wire with the environment [19]. We can ask if it is possible to infer
K considering the LL as a “black box” (in the spirit of scattering
theory of electronic conduction [20]) and performing electrical
measurements in the leads alone. One could naively expect that
the interaction inside the system modifies the conductance of the
wire, thus providing a direct experimental way to measure K. It is
not correct, however. It is well known [21–24] that, due to absence
of fermionic backscattering in a clean LL, its DC conductance is
given by the interaction-independent value e h/2 . Moreover, while
under generic non-equilibrium conditions the distribution func-
tion of the electrons that have passed the interacting part of the
system depends on the interaction strength [25], the zero-fre-
quency full counting statistics of the charge transferred through
the system [26] is insensitive to the interaction. On the other hand,
the non-equilibrium noise [27] and the full counting statistics [26]
at high frequencies (of the order of or larger than the inverse
flight-time through the system) do depend on the interaction
strength but they are challenging to measure experimentally [28].

In this work we show that the interaction in a LL wire can,
however, be probed by low-frequency charge noise measurements
provided that the electrons emerging from the LL are mixed (via
scattering at an additional quantum point contact, QPC) with
electrons coming from an independent reservoir. A similar ap-
proach was proposed recently to probe the (pseudo-)spin-charge
separation in systems of co-propagating channels [29].

The structure of the paper is as follows. In Section 2 we in-
troduce a device, consisting of 4 sources (SL, SR, S1, S2) and
2 drains D1 and D2 that are connected by two point contacts
characterized by transmission and reflection coefficients t2 and r2

(see Fig. 1). The system is driven out of equilibrium by an

“injection” of electrons with double-step energy distribution
trough the source SR. Such a distribution may be naturally pre-
pared by means of an additional QPC0 (not shown in Fig. 1). The
step height h is then given by its transmission coefficient. In Sec-
tion 3 we calculate the shot noise in drain D2 as a function of the
Luttinger liquid parameter K. Section 3.1 is devoted to description
of the general formalism while Section 3.2 summarizes the results
in the limits of weak K 1 a 1(| − | ̂ª¡ ) and strong K a 1( ̂ª¡ ) interaction for
voltage U in SL much larger than the inverse of the flight time τl in
the interaction region. In Section 3.3 we present few numerical
results for generic values of interaction parameter K.

Specifically, Figs. 5 and 6 illustrate the central results of the
paper. Fig. 5 demonstrates the dependence of the noise at zero
voltage V (at source S2) on the parameter h of the double-step
distribution (1) of incoming right-moving electrons. The noise
attains its maximal value when the initial distribution is particle–
hole symmetric (h¼0.5) and the QPC mixing the electrons from
the LL wire with those from the source S2 has reflection prob-
ability r t 0.52 2= = . The ratio of this maximal noise to the voltage
U in SL is a universal function of the LL parameter. Fig. 6 shows that
the maximal current noise at drain D2 at zero frequency and zero
voltage in source S2 (ω¼0 and V¼0), which we denote as

S Vmax 0, 0h r t D, , 22 2 ω[ ( = = )], provides a direct access to the value of
the LL parameter K. Although we do not have a simple analytic
expression for the noise in this situation, the curve is universal and
our numerical results can be used to determine K.

Section 4 presents the calculation of the noise in drain D1 and
Section 5 discusses the situation for attractive interactions. We
conclude the paper with a summary section, Section 6.

2. Setup

A setup that we consider in the present paper (and that is
particularly relevant in the context of quantum Hall physics, see,
e.g., Ref. [18]) is shown in Fig. 1. It includes two counter-
propagating electronic (or, more generally, fermionic) modes,
right-movers R and left-movers L, interacting over a distance l via a
short-range interaction characterized by the LL parameter K. The
system is driven out of equilibrium by an “injection” of incoming
R-electrons (source SR) with a double-step energy distribution,

n h n hn1 , 1R 0 0 0 1(ϵ) = ( − ) (ϵ − ϵ ) + (ϵ − ϵ ) ( )

Here, n0 Θ(ϵ) = ( − ϵ) is the zero-temperature Fermi–Dirac dis-
tribution with zero chemical potential and hU0ϵ = − ,

h U11ϵ = ( − ) are the positions of the Fermi edges [30]. The double-
step distribution (1) may be naturally prepared by means of a
QPC0 (not shown in Fig. 1). The parameter h is given in this case by
the transmission probability of the QPC0, while the parameter U is
the QPC0 voltage. (We set the electron charge e to unity through-
out the paper, restoring it in the final expressions only.) The left-
moving mode starts at zero temperature and zero voltage from the
source SL. After traversing the interacting part of the wire, right-
movers and left-movers are mixed with electrons from sources S1
and S2 (kept at zero temperature and chemical potential V) via
scattering at QPCs with transmission (reflection) amplitudes t (r).
We are interested in the charge noise at drains D1 and D2

S V dt I t I e, , 0 ,
2D D D D D D

i t
1/ 2 1/ 2 1/ 2∫ { }ω δ δ( ) = ( ) ( )

( )
ω

∞

∞
−

where IDiδ is the fluctuating part of the current operator at the
drain i, and curly brackets denote the anticommutator. The second
argument of SD D1/ 2 in Eq. (2) emphasizes the dependence of noise
on the voltage V applied to the sources S1 and S2.

Closing this section let us specify the hierarchy of the energy
scales in our problem. First, we assume throughout the paper that

Fig. 1. Setup. Incoming R-electrons have a non-equilibrium double-step energy
distribution (1) characterized by the step width U 1 0= ϵ − ϵ and height h. This
distribution may be prepared by means of a QPC0 (not shown). The parameter h is
given in this case by the transmission probability of the QPC0, while the parameter
U is the QPC0 voltage. Incoming L-electrons, as well as S1- and S2-electrons are at
equilibrium but the distribution of the S1 and S2 electrons can be tuned with a
voltage V.
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