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a b s t r a c t

In the present study, the anisotropic resistivity of the monolayer graphene has been obtained in semi-
classical regime beyond the Dirac point approximation. In particular, detailed investigations were made
on the dependence of conductivity on the Fermi energy. At low energies, in the vicinity of the Dirac
points, band energy of the monolayer graphene is isotropic at the Fermi level. Meanwhile, at the in-
termediate Fermi energies anisotropic effects such as trigonal warping is expected to be the origin of the
anisotropic resistivity. However, besides the band anisotropy there also exists an other source of ani-
sotropic resistivity which was introduced by scattering matrix. At high energies it was shown that the
band anisotropy is less effective than the anisotropy generated by the scattering matrix. It was also
shown that there exist two distinct regimes of anisotropic resistivity corresponding the trigonal warping
and connected Fermi curve at intermediate and high energies respectively.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional crystals of carbon atoms (a single sheet of
graphite) [1] were first fabricated in 2004 by Novoselov et al. [2].
Discovery and fabrication of graphene provided a matchless op-
portunity for novel experimental observation of electronic trans-
port properties which has also provided a rich field of theoretical
studies over the last 10 years. The experimental realization of a
graphene has prompted much excitement and emotion in both the
experimental and theoretical physics. From a fundamental point of
view, discovery of graphene was important not only in providing
the first realization of Dirac Hamiltonian and relativistic massless
particles [3–7] but also in providing a way for designing graphene-
based electronic devices. The discovery of these extraordinary
properties in graphene-based systems in recent years opens un-
precedented expectancy for the investigation of low dimensional
systems.

The energy bands of graphene touch together in the edge of the
hexagonal Brillouin zone known as Dirac points. The energy
spectrum of carriers is linear at the Dirac points. This fact has
many significant consequences especially on the electric transport
in graphene. Therefore the electrical transport in graphene be-
comes a very active research field in recent years because of its
potential application in nano-material and instrumentation of
nano-scale materials. It should be noted that it was shown that the

graphene based nano-structures such as nano-ribbons could have
finite energy gap at the Dirac points [8–21].

As mentioned before in the pure graphene the energy band in
the edge of the hexagonal Brillouin zone meets each other. This
fact provides a theoretical perception to realize unusual transport
properties in this material. Graphene is a gapless semiconductor
with a minimal conductivity which can be considered as the
nearly universal value of the order of e h4 /2 [22–27]. Meanwhile
this conductivity depends on externally imposed conditions such
as the temperature and doping. The band structure of the gra-
phene has been obtained in the 1947 by Wallace [28] however, the
universal value of the minimal conductivity in the pure graphene
is not completely understood until the recent years.

In the present work it was shown that the Fermi energy, Fϵ ,
determines different transport regimes. Unlike the linear energy
dispersion at low energies (typically when 0 1 eVF< ϵ ≤ ) in the
vicinity of the Dirac points, small corrections, such as second order
of Dirac equation, [29] would lead to revision in effective Ha-
miltonian of graphene at higher energies. These corrections which
appear in the energy dispersion by introducing an additional
quadratic term result in deformation of the Fermi line. The de-
formation of the Fermi circle around a K-point in which the cir-
cular Fermi curve at the Dirac points changes to a trigonal is
known as trigonal warping. In fact breaking the symmetry of the
effective Hamiltonian at the Dirac points results in trigonal
warping [29–32]. This effect has been reported in graphene-re-
lated structures such as bilayer and multi-layer graphene and even
in carbon nano-tubes [33–35]. It was also shown that, by in-
creasing the Fermi energy beyond the hopping energy, t, another
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regime will appear in which the shape of the Fermi curves and the
behavior of the anisotropic resistivity (AR) are changed
simultaneously.

2. Model

Anisotropic transport generally has been discussed in terms of
the asymmetry of the scattering between two states on the Fermi
surface. In the present work we have employed an analytical ap-
proach which was introduced by Výborný et al. in [36]. They have
described an analytical approach in which the anisotropic trans-
port can be obtained within the semiclassical Boltzmann method
[36]. We consider the Boltzmann equation for non-equilibrium

distribution function, f k( , )ε
→

λ , as
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′〉. In this approach the following solution
has been proposed for non-equilibrium distribution function:
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where ϕ and θ are angles along the k
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(wave vector) and ε→

(electrical field ) respectively. λ and λ′ are the band indices, f0 is the
equilibrium distribution function and the velocity, v→λ ,
v( (1/ ) )k k
→ = ∇ ϵλ → is given by the band dispersion energy. The electric

field and the wave vector have been denoted by (cos , sin )ε ε θ θ→ =

and k k(cos , sin )ϕ ϕ
→

= respectively.
The Taylor series of the distribution function is given as
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For a two band system (λ = ±) by using the above equations it can
be shown that in order to have the non-equilibrium distribution
function following relations have to be satisfied [36]:
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where a ( )ϕ± and b ( )ϕ± take the form of the Fourier series that can
be described by
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Provided that the coefficients a± and b± are known by solving
Eqs. (4) and (5) the non-equilibrium distribution functions are
given for each band as follows:
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3. Anisotropic conductivity beyond the Dirac point

Tight binding Hamiltonian of pure graphene in the nearest
neighbor approximation is given by
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(10)i j

i j0
,

∑= − +
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†

in which the operators ai
† and bj refer to the creation and annihi-

lation of an electron in sublattices A and B respectively and
t¼2.7 eV denotes the hopping parameter.

The matrix representation of the Hamiltonian in the bases
( , )A Bψ ψ ψ= is as follows:
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nearest neighbors position vectors by a( /2)(1, 3 )1δ
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= − in which the carbon–carbon
distance is denoted by a¼1.42 Å.

The eigen-states may then be written as

⎛
⎝⎜

⎞
⎠⎟

e1
2 1

,
(12)k

i k
ψ λ=

φ̄

in which

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H k

H k
( ) tan

Im ( )

Re ( )
,

(13)
k

AB

AB

1φ ϕ¯ =
→

→
−

and

⎛
⎝⎜

⎞
⎠⎟

k

k
tan ,

(14)
y

x

1ϕ = −

Then the band energies are given by
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where 1λ = ± is the band index. Unlike the Dirac point Hamilto-
nian here the energy spectrum is anisotropic in k-space.

In the presence of the impurities the Hamiltonian of the system
reads

H H V (16)im0= +

in which V r v r r( ) ( )im j jδ→ = ∑ → − → stands for short range impurity
potential in which summation is over the position of the im-
purities and v is the strength of the impurity potential. The scat-
tering rates are defined through the relations:

n v v

n v v

( , ) ( cos( ))

( , ) ( cos( )) (17)

i k k

i k k

2 2

2 2

ω ϕ ϕ π φ φ

ω ϕ ϕ π φ φ

′ = + ¯ − ¯

′ = + ¯ − ¯

++ ′

−− ′

n v v

n v v

( , ) ( cos( ))

( , ) ( cos( )) (18)

i k k

i k k

2 2

2 2

ω ϕ ϕ π φ φ

ω ϕ ϕ π φ φ

′ = − ¯ − ¯

′ = − ¯ − ¯

+− ′

−+ ′

where ni is the density of the impurities. Scattering rates can be
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