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H I G H L I G H T S

� The excitonic states and their wave functions in gapped graphene and in MoS2 are presented.
� The Schrodinger equation in gapped graphene, in a single-layer MoS2 and in bilayer graphene was solved.
� In the graphene in the MoS2 the electron–hole pairing leads to the exciton insulator states.
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a b s t r a c t

In the paper a theoretical study of both the quantized energies of excitonic states and their wave functions
in gapped graphene and in monolayer of MoS2 is presented. An integral two-dimensional Schrödinger
equation of the electron–hole pairing for particles with electron–hole symmetry of reflection is analytically
solved. The solutions of Schrödinger equation in momentum space in gapped graphene and in the direct
band monolayer of MoS2 by projection the two-dimensional space of momentum on the three-dimen-
sional sphere are found. We analytically solve an integral two-dimensional Schrödinger equation of the
electron–hole pairing for particles with electron–hole symmetry of reflection and with strong spin–orbit
coupling. In monolayer of MoS2 as well as in single-layer graphene (SLG) the electron–hole pairing leads to
the exciton insulator states. Calculating an integral two-dimensional Schrödinger equation of the electron–
hole pairing for bilayer graphene, exciton insulator states with a gap 3 meV are predicted. The particle–hole
symmetry of Dirac equation of layered materials allows perfect pairing between electron Fermi sphere and
hole Fermi sphere in the valence band and conduction band and hence driving the Cooper instability.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The graphene and graphene-like systems as well as the MX2
(M¼Mo, W, X¼S, Se) [1–9] present a new state of matter of
layered materials. The energy bands for graphite were found using
”tight-binding” approximation by Wallace [10]. In the low-energy
limit the single-particle spectrum is a Dirac cone similar to the
light cone in relativistic mechanics, where the light speed is re-
placed by the Fermi velocity vF.

In the paper we present a theoretical investigation of excitonic
states as well as their wave functions in gapped graphene and in a
direct band MoS2. An integral form of the two-dimensional
Schrödinger equation of Kepler problem in momentum space is
solved exactly by the projection of the two-dimensional space of
momentum on the three-dimensional sphere in the paper [12].

The integral Schrödinger equation was analytically solved by

the projection of the three-dimensional momentum space onto
the surface of a four-dimensional unit sphere by Fock in 1935
[11].

We consider the pairing between oppositely charged particles
with complex dispersion. The Coulomb interaction leads to the
electron–hole bound states scrutiny study of which acquire sig-
nificant attention in the explanations of superconductivity.

If the exciton binding energy is greater than the flat band gap in
narrow-gap semiconductor or semimetal then at sufficiently low
temperature the insulator ground state is instable with respect to the
exciton formation [13,14]. And excitons may be spontaneously cre-
ated. A system undergoes a phase transition into a exciton insulator
phase similar to Bardeen–Cooper–Schrieffer (BCS) superconductor. In
a single-layer graphene (SLG) and in a single-layer MoS2 the elec-
tron–hole pairing leads to the exciton insulator states [15].

In the paper an integral two-dimensional Schrödinger equation
of the electron–hole pairing for particles with complex dispersion
is analytically solved. Complex dispersions lead to fundamental
difference in exciton insulator states and their wave functions.
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A crossing direct-gap like dispersion of single layer of graphene
and single layer of MoS2 does not lead to the fundamental differ-
ences in the many-particle effects in comparison with würtzite
semiconductors [16,17].

We analytically solve an integral two-dimensional Schrödinger
equation of the electron–hole pairing for particles with electron–
hole symmetry of reflection.

For graphene in vacuum the effective fine structure parameter
e v/ 1.23G F

2α ε π= = . For graphene in substrate 0.77Gα = , the
permittivity of graphene in substrate is estimated to be 1.6ε =
[18], which means the prominent Coulomb effects [19].

It is known that the Coulomb interaction leads to the semi-
metal-exciton insulator transition, where gap is opened by elec-
tron–electron exchange interaction [14,20–22]. The perfect host
combines a small gap and a large exciton binding energy [13,14].

In graphene as well as in MoS2 the existing of bound pair states
is still subject matter of researches [23–27].

It is known [28] in the weak-coupling limit [29], exciton con-
densation is a consequence of the Cooper instability of materials with
electron–hole symmetry of reflection inside identical Fermi surface.
The identical Fermi surfaces are a consequence of the particle–hole
symmetry of the Dirac equation. The room temperature superfluidity
is shown to be calculated for bilayer graphene [13,28].

The particle–hole symmetry of the Dirac equation allows per-
fect pairing between electron Fermi sphere and hole Fermi sphere
in the opposite layer and hence driving the Cooper instability. In
the weak-coupling limit in graphene with the occupied conduc-
tion-band states and empty valence-band states inside identical
Fermi surfaces in band structure, the exciton condensation is a
consequence of the Cooper instability.

2. Theoretical study

2.1. Graphene

In the honeycomb lattice of graphene with two carbon atoms
per unit cell the space group is D h3

1 [30]:
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The direct production of two irreducible presentations of wave
function and wave vector of difference Kκ − or Kκ − ′ expansion is
K K3 3×+ +⋆ and can be expanded on

p K K K K K K: ( ) . (1)k 1 2 3 3 3 3τ τ× = + + × = ×α
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In the low-energy limit the single-particle spectrum is Dirac
cone. The Hamiltonian of graphene [10]

H v q q
2

( ), (2)z F x x y y
Δσ τ σ σ^ = ^ + ^ + ^

where Δ is the band gap of graphene, qx and qy are Cartesian
components of a wave vector, 1τ = ± is the valley index,
v 1 10F

6= × m/s is the graphene Fermi velocity, xσ̂ , yσ̂ , and zσ̂ are
Pauli matrices (here we assume that 1= ).

The dispersion of energy bands may be found in the following

form [10]:
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The Schrödinger equation for calculating of exciton states can
be written in the following general form:
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where q0
2 = − ϵ, ϵ is a quantized energy. We look for the bound

states and hence the energy will be negative (Figs. 1–8).
An integral form of the two-dimensional Schrödinger equation

in momentum space for the gapped graphene is solved exactly by
the projection of the two-dimensional space of momentum on the
three-dimensional sphere (Tables 1–5).

For the gapped single layer graphene
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where an each point on sphere is defined of two spherical angles θ
and ϕ, which are knitted with a momentum q [11,12]. A space
angle Ω may be found as a surface element on sphere
d d d q q q dqsin( ) (2 /( ))0
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2 2Ω θ θ ϕ= = + [11,12]. A spherical angle θ

and a momentum q are shown [11,12] to be knitted as
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Using spherical symmetry the solution of integral Schrödinger
equation can look for in the following form:
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Fig. 1. Single-particle spectrum of gapped graphene.
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