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H I G H L I G H T S

� A double-walled carbon nanotube is modeled as two individual cylindrical thin shells.
� Nonlocal shell theory is used to investigate thermoelastic vibration behavior of DWCNTs.
� Small-size effects decrease natural frequencies and increase thermoelastic damping compared to the local model.
� For upper coaxial frequency modes, the small-size effect is more profound.
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a b s t r a c t

Thermoelastic damping (TED) is a major factor of dissipating energy in the vibration control of
nanodevices. On the other hand, application of classic theory in the study of nanostructures is not
reasonable. In this paper, a model based on nonlocal shell theory, accounting for the small-scale effects, is
used to investigate thermoelastic vibration behavior and damping of double-walled carbon nanotubes
(DWCNTs) with simply supported boundary conditions. The inner and outer carbon nanotubes are
considered as two individual thin shells. The set of general thermoelastic coupled equations are
numerically solved. The results show that the small-scale effects decrease natural frequencies and
increase thermoelastic damping compared to the local model, especially for the coaxial frequency and
large circumferential wave numbers. The numerical results also show that when the radius of nanotubes
rises, the influence of small-size effect on natural frequencies and thermoelastic damping drops
dramatically.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes exhibit superior mechanical properties and
appealing thermal and electrical conductivity over any known
material. The nanometer-size of carbon nanotubes holds substan-
tial promise for new applications in nanobiological devices and
nanomechanical systems [1–3]. Therefore, many experimental and
theoretical investigations have been carried out to understand the
properties and behavior of the CNTs [4–6].

Continuum models especially elastic shell models are relatively
simple and cost-effective as compared to experiments and mole-
cular dynamic simulations.

Due to the multi-walled nature of CNTs, there are forces
between the carbon atoms that make up the cylindrical walls.
These forces, called van der Waals forces, cannot be neglected due
to their significance at this molecular scale.

The sensitivity of a mechanical oscillator, which usually oper-
ates at its harmonic resonance frequency, depends mainly on the
quality factor Q (the inverse of the energy dissipation) of the
oscillator. By entering the nano-scale the quality factor is reduced.
Thus, the investigation of different methods of energy dissipation
becomes essential. Thermoelastic damping is the main parameter
in the reduction of the quality factor in nano-oscillator. Zener [7]
studied the theory of thermoelasticity for the first time. Recent
researches in the analysis of thermoelastic damping belong to
continuous models in beams, plates and shells [8–11]. But in these
studies, the shell model has not been used as frequently as the two
other models. Nayfeh and Younis [8] by considering microplates
under electrostatic actuation studied the TED for variable voltage,
temperature and thickness of a microplate. Their results show that
electrostatic forces increase TED. Hajnayeb et al. [9] utilized a
double-elastic beam model for thermoelastic vibrations of double-
walled carbon nanotubes under electrostatic actuation and inves-
tigated the effect of the geometrical properties and applied DC
voltage on the quality factor of the nanotubes. They expressed that
shorter nanotubes under higher voltage have greater values of TED.
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Taking advantage of shell models for short tubes, Lu et al. [10]
studied the TED in cylindrical shell structures and applied the
results to a single-walled nanotube as an example. Hoseinzadeh
and Khadem [11] by considering intermolecular interaction and
initial axial stresses, used a shell model to examine TED for DWCNT
with various boundary conditions. It is apparent that in all the
studies on TED for continuous models up to now, the classical
elastic theory has been used, which is on the assumption that
carbon nanotubes are solid and homogenized while the material
properties at the nano-scale are size dependent. Thus, the small
length scale effect needs to be considered for a better prediction of
the mechanical behavior of the nano-materials.

The essence of the nonlocal elasticity theory developed by
Eringen [12] indicates that the stress state at a given reference
point is a function of the strain field at any point in the body.

Wang et al. [13], by using the nonlocal beam theory in vibration
of nanotubes, showed that nonlocal effect reduces natural fre-
quencies. Also, Lee and Chang [14] indicated that in vibration of
nanotubes conveying fluid, small size has a stronger effect at low
flow velocities and high mode numbers.

In addition to nonlocal beam models, the CNTs with low
length-to-diameter ratios (L=R, where L is the length of the
nanotube) have been modeled with elastic shell models, where
nonlocal shell models have become indispensable, especially
when the length-to-radius ratio of the CNTs decreases. Li et al.
[15] investigated the vibrational behavior of the multiwalled
carbon nanotubes embedded in an elastic medium by a nonlocal
shell model. They expressed that when the order of the geometric
size of the structures is beyond the nanometer range, the influence
from the small scale parameters could be neglected. Arash and
Ansari [16], based upon a nonlocal shell, studied the vibration
characteristics of single-walled carbon nanotubes with different
boundary conditions subjected to initial strains. Their results show
that the coefficient of small-size effect depends on boundary
conditions.

So, it is certain that there are no studies to examine the
influence of nonlocal effect on thermoelastic damping. The pri-
mary objective of this paper is to analyze thermoelastic vibration
of double-walled carbon nanotubes based on cylindrical shell
theory and the role of small-size effect on natural frequencies
and thermoelastic damping of vibration of DWCNT.

2. Modeling and formulation

In nonlocal elasticity, the stress at a reference point x is
considered to be a functional of the strain field at any point in
the body so that the stress state at a reference point in the body is
regarded to be dependent not only on the strain state at that point
but also on the strain states at all the points throughout the body.
For homogeneous and isotropic elastic solids, the constitutive
equations of nonlocal elasticity can be written as [15]

sx�ðe0aÞ2∇2sx ¼
E

1�ν2
ðεxþνεθÞ ð1� aÞ

sθ�ðe0aÞ2∇2sθ ¼
E

1�ν2
ðεθþνεxÞ ð1� bÞ

sθx�ðe0aÞ2∇2sθx ¼
E

2ð1þνÞ γxθ ð1� cÞ

where ‘a’ is an internal characteristic length (for example: lattice
parameter, granular distance), e0 is a constant appropriate to each
material and E, ν, are the elastic modulus and Poisson’s ratio,
respectively.

Substituting Eq. (1) into the three equations of motion in the
cylindrical coordinate system [11] leads to the nonlocal cylindrical

shell theory expressed by

∂ðNxx� ~NT þðe0aÞ2∇2 ~NT Þ
∂x

þ 1
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∂Nθx
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þpi�ðe0aÞ2∇2pi�ρhð1�ðe0aÞ2∇2Þ ∂
2wi
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where ui vi and wi ði¼ 1; 2;…; NÞ are the longitudinal, circumfer-
ential and radial displacement components of the ith tube, t is the
time, ρ is the mass density, h is the thickness, pi is the pressure
exerted on the tube due to vdW interaction between walls, Nij is
the resultant of the membrane force, and Mij is the resultant of the
bending moment.

It is assumed that attractive vdW force is negative and the
repulsive vdW interaction is positive. Thus, the pressure due to
vdW interaction can be expressed as [17]

piðx;θÞ ¼ ∑
N

i ¼ 1
Cijðwi�wjÞ ð3Þ

in which Cij is the vdW interaction coefficient and depends on Ri.
The thermal membrane force ~NT and bending moment ~MT can

be obtained as

~NT ¼
Eαt

1�μ

Z h=2

�h=2
ðT�T0Þ dz ð4� aÞ

~MT ¼
Eαt

1�μ

Z h=2

�h=2
ðT�T0Þz dz ð4� bÞ

where αt is the coefficient of thermal expansion.
For transverse vibrations, the general governing equations

given above can be simplified with Donnell–Mushtari–Vlasov
approach. Based on this simplification

εxx ¼ ε0xxþzκxx ¼
∂u
∂x

� �
þz � ∂2w

∂x2

� �
ð5� aÞ

εθθ ¼ ε0θθþzκθθ ¼
1
R
∂v
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þ w
R

� �
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R2

∂2w
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� �
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R
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þ ∂v
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R
∂2w
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� �
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and the first two equations in Eq. (2) can be reduced to

∂ðNxx� ~NT þðe0aÞ2∇2 ~NT Þ
∂x

þ 1
Ri

∂Nθx

∂θ
¼ 0 ð6� aÞ

∂Nθx

∂x
þ 1

Ri

∂ðNθθ� ~NT þðe0aÞ2∇2 ~NT Þ
∂θ

¼ 0 ð6� bÞ

Now, introducing a function ϕ related to Nij

Nxx� ~NT þðe0aÞ2∇2 ~NT ¼
1

R2

∂2ϕ

∂θ2 ð7� aÞ

Nθθ� ~NT þðe0aÞ2∇2 ~NT ¼
∂2ϕ
∂x2

ð7� bÞ
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