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H I G H L I G H T S

� Vibration and buckling of single and
multi-layered graphene sheets are
considered.

� The finite strip method is applied to
study the GS's problems for the
first time.

� Nonlocal continuum mechanics is
employed to include the small
scale-effects.

� Effect of van der Waals forces is
considered in the stiffness matrix of
the system.

� Contrary to the most of the studies,
different boundary conditions are
considered.

G R A P H I C A L A B S T R A C T

The finite strip method is proposed to study the vibration and buckling characteristics of rectangular
single and multi-layered graphene sheets, based on the nonlocal classical plate theory taking into
account the effects of van der Waals forces between the layers.
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a b s t r a c t

Detailed studies on the nanoscale vibration and buckling characteristics of rectangular single and multi-
layered graphene sheets (SLGSs and MLGSs) are carried out using semi-analytical finite strip method
(FSM), based on the classical plate theory (CPT). The displacement functions of the sheets are evaluated
using continuous harmonic function series which satisfy the boundary conditions in one direction and a
piecewise interpolation polynomial in the other direction. Nonlocal continuum mechanics is employed to
derive the differential equation of the system. The weighted residual method is employed to obtain
stiffness, stability and mass matrices of the graphene sheets. The effects of van der Waals (vdW) forces
which are present as bonding forces between the layers are considered in the stiffness matrix of the
system. The analysis of MLGSs is much more complex due to the influence of vdW forces. The mechanical
properties of the graphene sheet are assumed in two ways as orthotropic or isotropic materials. A matrix
eigenvalue problem is solved to find the natural frequency and critical stress of GSs subjected to different
types of in-plane loadings including uniform and non-uniform uniaxial loadings. The accuracy of the
proposed model is validated by comparing the results with those reported by the available references.
Furthermore, a comprehensive parametric study is performed to investigate the effects of various
parameters such as boundary conditions, nonlocal parameter, aspect ratio and the type of loading on the
results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Invention of carbon nanotubes (CNTs) in 1991 by Iijiima [1]
opened a wide space to the scientific community. CNTs have many
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potential applications, due to their great mechanical, chemical,
thermal, electrical and electronic characteristics [2]. CNTs are
classified into single-walled (SWCNTs) and multi-walled carbon
nanotubes (MWCNTs). Graphene, the new miracle material which
was introduced in 2004 [3], is also another type of carbon
nanomaterials with a two-dimensional structure. It possesses
many superior properties such as good flexibility and high thermal
and electrical conductivity [4,5]. Similar to CNTs, two groups of
graphene sheets (GSs) are considered in the literature, namely
single-layered graphene sheets (SLGSs) and multi-layered gra-
phene sheets (MLGSs).

The application of these nanostructures is rapidly growing in
different areas such as aerospace, microelectronics, micro electro-
mechanical systems (MEMS), nanoelectromechanical systems
(NEMS) and nanocomposites [6–8]. Hence, it is indispensable to
recognize and analyze different behaviors of nanostructures.
Alongside the experimental works, various analytical and numer-
ical methods have been recently done to achieve this aim. These
methods can be classified as atomistic-based methods and
continuum-based methods. Atomistic-based methods include the
molecular dynamics simulation (MD) [9,10], tight-binding mole-
cular dynamics [11] and density function theory [12]. Because of
the difficulties in nanoscale experiments and the expensive
computations of atomistic based methods for a large system of
atoms, development of appropriate mathematical models based
on classical continuum mechanics has been an important issue in
the analysis of CNTs and GSs. Different exact and numerical
continuum mechanics models have been used by researchers to
capture the accurate results. However, owing to their small
dimensions, the application of classical continuum models may
be debatable in the analysis of nanostructures. Experiments
demonstrate that the behavior and mechanical properties of
nanomaterials are affected by scale-effect or size-effect. Size-
effects are related to long-range inter-atomic interactions and
could not be ignored in the analysis of nanostructures. Therefore
to predict the accurate results, it is necessary to consider the small
scale-effects. One of the most reported size-dependent continuum
theories is the nonlocal elasticity theory proposed by Eringen [13–
15], in which the forces between atoms and the internal length
scale are considered in the formulation. The small-scale effects are
captured by assuming that the stress at a reference point is a
function of the strain field at every point in the domain. This is
unlike classical elasticity theory. The results of nonlocal models are
in accordance with atomistic results of lattice dynamics and MD
simulations [16]. So far, a large number of nonlocal based studies,
focused on static bending, dynamic vibration and stability analysis
of nanostructures have been reported. These include analysis of
nanobeams [17–20], nanotubes [21–26], nanorods [27], nanorings
[28] and nanoplates [29–31].

The popular nanoplates which have recently captured attention of
scientific community are SLGSs and MLGSs. GSs could be considered
as nanoplates to which the governing equations of different plate
theories, taking into account the small scale-effect, could be applied.
Moreover, the synthesis of graphene-based nanocomposites has
opened a new path in the research topics. Due to these increasing
applications, understanding the mechanical behaviors of GSs is
essential for their engineering design and manufacture. Different
vibration and buckling studies of SLGSs and MLGSs with and without
the surrounding elastic medium have been reported in the literature
[32–57]. These papers mostly applied the nonlocal elasticity theory
and used different methods such as differential quadrature method
(DQM) and finite element method (FEM).

The present work addresses the vibration and buckling beha-
vior of single and multi-layered graphene sheets using the finite
strip method (FSM). In comparison with other numerical methods
such as FEM, the finite strip method, which was first introduced by

Cheung [58], provides more efficient formulations for investiga-
tion of plate behavior under different loads and boundary condi-
tions. However, hitherto its direct application to the vibration and
buckling behavior of rectangular GSs has not been investigated.
Consequently, in this paper the semi-analytical FSM is employed
to investigate the vibration of SLGSs and MLGSs as well as their
buckling behavior when subjected to uniform and non-uniform
uniaxial compressive loadings. The van der Waals (vdW) intera-
tomic forces between layers of MLGSs are considered in the
derivation of stiffness matrices. Moreover, the present methodol-
ogy considers the influence of small scale-effects on the vibration
and bucking of GSs. Contrary to the majority of the studies,
different boundary conditions are considered in this study. Effects
of length, aspect ratio, higher modes and nonlocal parameter are
considered in the results.

This paper is organized into the following sections. In Section 2,
the Eringen's nonlocal theory of elasticity and its application in
classical plate theory is overviewed. In Section 3, mathematical
formulation of the finite strip method is presented and the
method is developed to study the buckling and vibration of
graphene sheets. Numerical results and discussions are demon-
strated in Section 4 for two types of SLGSs and MLGSs. Finally,
some concluding remarks are presented in Section 5.

2. Theory

The aim of this part is to introduce Eringen's nonlocal theory of
elasticity and its application in classical plate theory.

2.1. Nonlocal theory

According to the nonlocal elasticity theory [13–15], the relation
between stress and strain is expressed as

sijðxÞ ¼
Z
V
λðjx�x′j; τÞCijklεklðx′ÞdVðx′Þ ð1Þ

wheresij, εkland Cijkl are the stress, strain and components of the
fourth order elasticity tensor, respectively. Also, λðjx�x′j; τÞ is the
nonlocal modulus or attenuation function which incorporates the
nonlocal effects into constitutive equations, in which jx�x′jrepresents
the Euclidean form of the distance between xand x′, and τ is a material
constant that depends on the characteristic length ratio li=le, where li
is an internal characteristic length (e.g., lattice parameter, granular
distance, distance between C–C bonds) and le is an external character-
istic length (e.g., crack length, wave length). The material constant τ is
defined as τ¼ e0ðli=leÞ and could be evaluated by experimental
methods or the molecular dynamics (MD) simulation method. The
parameter e0 extremely depends on the complicated internal micro-
structures of nanomaterials; it is estimated such that the relations of
the nonlocal elasticity model provide satisfied approximation of
atomic dispersion curves of plane waves with those of atomic lattice
dynamics [48].

An equation in differential form is used as an alternative to
Eq. (1), because it is difficult to deal with integral constitutive. This
equation which is the basis of all nonlocal constitutive formula-
tions, is expressed as

Γsij ¼ Cijklεkl ð2Þ
where Γ denotes the nonlocal operator and is represented by
Eringen as

Γ ¼ 1�μ∇2 ð3Þ
in which μ¼ ðe0liÞ2 and ∇2 is the Laplacian operator. Therefore the
equation of nonlocal elasticity is represented as

ð1�μ∇2Þsij ¼ Cijklεkl ð4Þ
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