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H I G H L I G H T S

� Surface piezoelectricity model is first introduced to investigate the dispersive properties of elastic waves propagating in piezoelectric nanoplates.
� The dispersive modes predicted by the theory of surface piezoelectricity exhibit obvious size-dependent behaviors.
� In the presence of surface effects, the magnitude of propagating velocity decrease considerably for a given frequency.
� The critical plate thickness was predicted, above which the surface effects may vanish.
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a b s t r a c t

In this paper, surface effects on the dispersion characteristics of elastic waves propagating in an infinite
piezoelectric nanoplate are investigated by using the surface piezoelectricity model. Based on the surface
piezoelectric constitutive theory, the presence of surface stresses and surface electric displacements
exerting on the boundary conditions of the piezoelectric nanoplate is taken into account in the modified
mechanical and electric equilibrium relations. The partial wave technique is employed to obtain the
general solutions of governing equations, and the dispersion relations with surface effects are expressed
in an explicit closed form. The impacts of surface piezoelectricity, residual surface stress and plate
thickness on the propagation properties of elastic waves are analyzed in detail. Numerical results show
that the dispersion behaviors in piezoelectric nanoplates are size-dependent, and there exists a critical
plate thickness above which the surface effects may vanish.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

As a new emerging class of nanocomposites, piezoelectric
materials at the nanoscale have been fabricated in various shapes
and geometries for their technologically extensive applications in
the nanoelectromechanical systems (NEMS), such as sensors/
transducers, resonators, generators and piezoelectric field-effect
transistors [1–4]. Different from the macroscpoic counterparts, the
electroelastic properties of piezoelectric nanomaterials often exhi-
bit distinct size-dependent behaviors due to the increasing ratio of
surface area to volume, which has been demonstrated in the
existing experimental observations [5,6] and atomistic simulations
[7,8]. Therefore, it is important to accurately predict the static and
dynamic behaviors of piezoelectric nanostructures with consid-
eration of surface effects.

For elastic nanomaterials, the theory of surface elasticity
established by Gurtin et al. [9,10] is widely adopted as a effective
and reliable method to describe the surface effects on the size-
dependent phenomena [11–14]. However, it should be mentioned
that this theory will become invalid in estimating the electro-
mechanical responses of piezoelectric nanostructures since it
ignores the considerable sensitivity of piezoelectric effect near
the surface area. As a pioneering wok, Huang and Yu [15] proposed
a conceptual idea of surface piezoelectricity through extension of
the surface elasticity. Subsequently, Pan et al. [16] developed a
more precise surface theory to account for the linear superficial
interplay between electricity and elasticity. In recent years, there
has been significant interest in studying the electromechanical
properties of piezoelectric nanostructures by using the surface
piezoelectricity model [17–27]. Based on refined continuum
mechanics theories, the bending behaviors of piezoelectric nano-
wires [17] as well as the vibration and buckling behaviors of
piezoelectric nanobeams [18], nanofilms [19,20] and nanoplates
[21,22] incorporating surface effects were analyzed under an
prescribed electrical potential. Within the framework of nonlocal
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electroelasticity theory, Wang and Wang [23] predicted the
electromechanical coupling coefficient of the piezoelectric nano-
wire by using the piezoelectric surface-layer-based model. Chen
[24] studied the overall thermoelectroelastic moduli of two-phase
fibrous piezoelectric nanocomposites, and both the effects of
surface stress and surface electric displacement were considered.
In addition, Fang et al. discussed the surface effects on the
dynamic strength around a piezoelectric nano-fiber [25] and a
nano-particle [26], and on the effective dynamic properties of
piezoelectric medium with randomly distributed piezoelectric
nano-fibers [27].

Nowadays, two-dimensional piezoelectric nanoplates are
regarded as suitable building blocks for most energy harvesting
devices. Owing to the important applications of ultrasonic wave
nondestructive testing in the detection on nanostructures, it is
very urgent to investigate the mechanism of wave propagation in
piezoelectric nanoplates. To the authors' best knowledge, the
relevant literature is very limited except the paper of Zhang
et al. [28], where only the case of anti-plane shear waves was
considered. Motivated by this consideration, the present study
aims to analyze the size-dependent properties of elastic waves
propagation in an infinite piezoelectric nanoplate with considera-
tion of surface effects. Numerical examples will show the influence
of surface-related parameters on the dispersion curves with
different plate thicknesses.

2. Basic equations of the surface piezoelectricity

At the nanoscale, the atomic structures in the vicinity of the
piezoelectric surface are far from steady. Because of the broken
symmetry, they automatically modulate to be a self-equilibrated
state different from those in the underlying piezoelectric bulk.
Accordingly, a piezoelectric surface is usually modeled as a two-
dimensional heterogeneous membrane with its own material
parameters, and the corresponding constitutive equations can be
given as [17,29]

ssαβ ¼ s0αβþcsαβγδε
s
γδ�eskαβE

s
k; Ds

α ¼D0
αþesαγδε

s
γδþκsαkE

s
k; ð1Þ

where ssαβ and Ds
α are the surface stress and surface electric

displacement, s0αβ and D0
α are the residual surface stress and

surface electric displacement without applied strain and electric
field, εsγδ and Esk are the surface strain and surface electric field, and
csαβγδ , e

s
kαβ and κsαk are the elasticity, piezoelectricity and permittivity

tensor at the surface, respectively.
Assume that the piezoelectric surface layer of vanishing thick-

ness adheres perfectly to the bulk without slipping. The equili-
brium conditions on the surface are expressed according to the
generalized Young–Laplace equations [30,31], as

ssαβ;β ¼ sαjnj� f α; ssαβζαβ ¼ sijninj� f n; ð2Þ

Ds
α;α�Djnj ¼ 0; ð3Þ

where nj and ζαβ denote, respectively, the outward normal vector
and curvature of the surface, sij and Dj are the stress and the
electric displacement in the bulk, and f ¼ ðf 1; f 2; f nÞ stands for the
prescribed traction on the surface. Throughout this paper, Ein-
stein's summation convention is adopted for all repeated Latin
indices (1–3) and Greek indices (1, 2).

3. Problem statement and formulation

Consider a piezoelectric nanoplate of hexagon crystal structure
(class 6 mm) consisting of three layers: a bulk layer (middle) and
two surface layers (upper and lower). A rectangular Cartesian

coordinate system ox1x2x3 as shown in Fig. 1 is used to describe the
geometry of the problem. The nanoplate extends infinitely along
x1 and x2 directions, and its upper and lower surfaces are defined
by planes x3¼h and x3¼�h, respectively. The piezoelectric body is
poled along the x3-axis perpendicular to the ox1x2 plane, and is
subjected to a harmonic plane wave propagating in the x2
direction.

In the absence of body forces and free charges, the equilibrium
equations in the bulk can be written as

sij;j ¼ ρ €ui; Di;i ¼ 0; ð4Þ

where ρ and ui are the mass density and displacement of the bulk,
respectively.

Following the classical piezoelectric theory [32], the constitu-
tive relations in the bulk are

sij ¼ cijklεkl�ekijEk; Di ¼ eiklεklþκikEk; ð5Þ

where cijkl, ekij and κik are the elastic, piezoelectric, and dielectric
constants, respectively. The components of stain εij and electric
field Ei obey

εij ¼
1
2
ðui;jþuj;iÞ; Ei ¼ �φ;i; ð6Þ

with φ being the electric potential. Eq. (6) is often referred to as
the gradient equation of the piezoelectric materials, which is also
valid for the surface layers.

The physical problem to be analyzed can be simplified into a
two-dimensional model. For the elastic waves propagating in an
infinite piezoelectric plate with transversely isotropy, SH wave
(anti-plane strain state) may exist separately while P wave and SV
wave (plane strain state) are coupled. Here, only a plane strain
problem parallel to the x2–x3 plane is considered such that all field
quantities are independent of x1. Substitution of Eqs. (5) and (6)
into Eq. (4) results in the following partial differential equations

c11u2;22þc44u2;33þðc13þc44Þu3;23þðe31þe15Þφ;23 ¼ ρ €u2;

ðc44þc13Þu2;23þc44u3;22þc33u3;33þe15φ;22þe33φ;33 ¼ ρ €u3;

ðe15þe31Þu2;23þe15u3;22þe33u3;33�κ11φ;22�κ33φ;33 ¼ 0:
ð7Þ

According to the partial wave technique, the general solutions
with respect to the displacement ui and electric potential φ in
Eq. (7) can be expressed in the form [33]

u2 ¼ Aexp ðkbx3Þ cos kðx2�ctÞ;
u3 ¼ Bexp ðkbx3Þ sin kðx2�ctÞ;
φ¼ Cexp ðkbx3Þ sin kðx2�ctÞ;

ð8Þ

where A, B, and C are constant coefficients, b is a parameter to be
determined, k is the wave number, c is the phase velocity, and
ω¼ kc stands for the circular frequency of the elastic waves.

Fig. 1. Geometric configuration and coordinate systems of the problem.
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