Contents lists available at ScienceDirect

Progress in Natural Science: Materials International

journal homepage: www.elsevier.com/locate/pnsmi

Original Research

Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors

Suttinart Noothongkaew^{a,*}, Jin Kyu Han^b, Young Bum Lee^b, Orathai Thumthan^a, Ki-Seok An^b

^a Department of Physics, Faculty of Science, Ubon Ratchathani University, 34190, Thailand

^b Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-600, Republic of Korea

ARTICLE INFO

Keywords: Titanium oxide Gold nanoparticles UV photodetectors

ABSTRACT

This work reports the Au nanoparticles (NPs) deposited on TiO_2 nanotubes (NTs) which were successfully synthesized by a simple two-step anodization method. This fabrication process is notable for a simple and inexpensive method for obtaining pure TiO_2 NTs and Au NPs deposited TiO_2 NTs. The prepared samples were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), and I-V curve. We found that the size of Au NPs can be controlled by changing the bias voltage during the deposition. The photodetectors of Au NPs/TiO₂ devices showed good wavelength selectivity with high photocurrent as compared to pure TiO_2 NTs devices. Subsequently, Au NPs deposited on TiO_2 NTs at bias voltage of 70 V was potentially used in fabrication of UV photodetector. At this applied voltage, a high density of Au NPs was uniformly deposited on TiO_2 NTs. As a result, it enables a high photocurrent and great responsivity in UV region. It is suggested that the Au NPs deposited TiO_2 NTs device shows good promise for UV photodetectors with possibility to fine-tune properties in both UV and visible regions and is worthy of further investigation.

1. Introduction

Titanium dioxide (TiO_2) is a n-type semiconductor. There has been much interest in its basic characteristics and for applications in gas sensor, dye sensitized solar cells, hydrogen generation by water photoelectrolysis, photocatalysts, and so forth [1-3]. This is due to its outstanding physical and chemical properties. Recently, special interest has been focused on TiO₂ nanostructures such as nanowires, nanorods, or nanotubes. These structures have a large surface area to volume ratio, long term stability, non-toxicity, low cost, easy preparation and broad functionality. Among these nanostructures, TiO₂ nanotubes (TiO₂ NTs) are a popular material due to its vertically oriented, highly ordered structure. In addition, it can be easily prepared by the anodization of Ti foil [3-11]. TiO2 NTs have been extensively studied for their applications in sensors for hydrogen, oxygen, humidity, and glucose [9-11]. It is found that the TiO₂ NTs based sensors usually exhibit high performance with low detection limit, high stability, good reproducibility, and fast response. TiO₂ is a wide band gap 3.2 eV for anatase phase and 3.0 eV for rutile phase, [11]. Due to its wide band gap, it is only sensitive to the light wavelengths below 380 nm which belong to the UV region [12]. However, there are some problems for TiO₂ applications. One problem is the fast recombination of photo-induced electrons and holes, (charge carriers) in TiO₂. To solve this problem,

various attempts have been studied for surface modification of TiO₂ with noble metals. These metals can greatly enhance the surface activity due to the rapid transfer of photoelectrons. Recently, gold nanoparticles (Au NPs) supported on TiO₂ have raised interest because of the reduction of electron-hole recombination in Au-TiO₂ composite. Additionally, the presence of Au NPs on the surface of TiO₂ can increase the electron-hole pair separation. Up to now, several techniques have been reported on the deposition of Au NPs on the surface of TiO₂ nanostructures such as photoreduction, ultrasonic assistance reduction, thermal evaporation, sol-gel, electrochemical methods, depositionprecipitation RF-sputtering, dip coating, spin-coating, and other methods [13-21]. Of the previously mentioned methods are expensive and complex procedures, in addition metal cluster of non-uniform size and shape are difficult to control. In this work, we report on the innovative and facile fabrication of Au NPs decorated on the surface and the walls of TiO₂ NTs by using the two-step anodization method. To our knowledge, Au NPs anodized on the surface of TiO₂ has been rarely reported. It can easily, quickly, and inexpensively obtain Au NPs on TiO₂ NTs. Furthermore, the size of Au NPs can be controlled by changing the time, concentration of precursor HAuCl₄ and bias voltage of deposition. Pure TiO₂ NTs and Au NPs decorated on TiO₂ NTs were successfully synthesized by two-step anodization method, and subsequently it was used in the fabrication of a highly sensitive UV

https://doi.org/10.1016/j.pnsc.2017.10.001

Received 27 December 2016; Received in revised form 19 October 2017; Accepted 20 October 2017 Available online 06 December 2017 1002-0071/ © 2017 Chinese Materials Research Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Peer review under responsibility of Chinese Materials Research Society.

^{*} Corresponding author.

E-mail address: suttinart_n@yahoo.com (S. Noothongkaew).

photodetector device. We found that the UV photodetector device is highly sensitive to 365 nm UV light, and the Au NPs on TiO_2 NTs devices can enhance the responsivity as compared to pure TiO_2 NTs devices. The research of Au NPs decorated TiO_2 NTs for UV photodetector applications are seldom reported. There are several reported for applications in visible light photocatalysis, efficient visible light hydrogen generation, photoelectrochemical water splitting, surface enhanced Raman scattering, and so on [13–21] due to the localization surface plasmonic resonant effect of Au NPs.

2. Experimental

TiO₂ NTs with ultrahigh aspect ratio were grown on a Ti foil by electrochemical anodization method. Ti foils (0.25 mm in thickness, 99.7% in purity, Sigma Aldrich) was cut into a 1.0×1.5 cm piece. Then, it was cleaned by acetone, ethanol and deionized water,

respectively, each step for 5 min in ultrasonic bath and dried with the flowing nitrogen gas. The anodization of Ti foil was performed at room temperature in a two -electrode electrochemical cell in which the graphite sheets and Ti foils were used as the cathode and anode, respectively. The anodization process was divided into two steps. First step for anodizing; the cleaned Ti foil was anodized in mixture of 0.3 wt% $\rm NH_4F,\,87.7$ wt% ethylene glycol and 12 wt% deionized water, for 2 h under a constant voltage of 50 V. After anodizing the sample was cleaned with DI water, acetone, and ethanol, respectively, for 10 min in each process, and then the resulting oxide layers were annealed at temperature of 450 °C for 2 h. In this work, the structure and thickness of TiO₂ NTs was controlled by the anodization process. Second step, HAuCl₄·3H₂O (Sigma Aldrich) solution in DI water was used as the Au NPs precursor. The annealed TiO₂ were again anodized [graphite sheets (anode) and TiO₂ nanotubes (cathode)], in an aqueous solution of HAuCl₄·3H₂O (0.1 mM in DI water) at different voltages (3-140 V) for

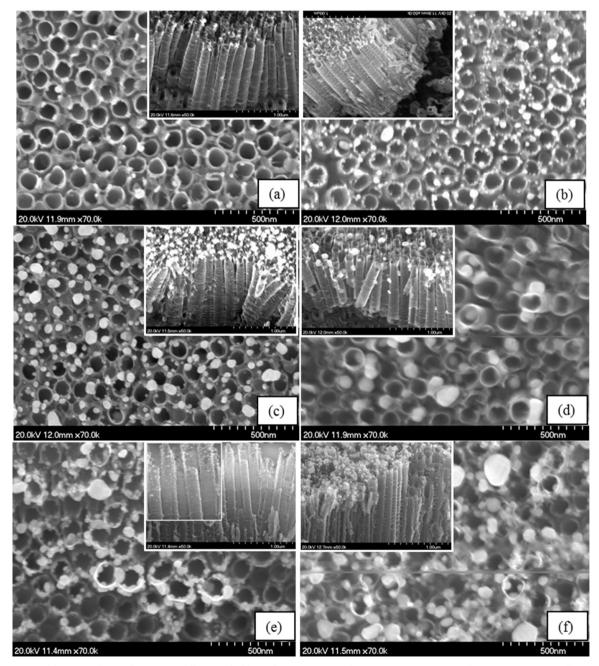


Fig. 1. FE-SEM images of the Au NPs decorated TiO₂ NTs at different applied bias voltages, top views and cross section (inset) at 3 V as shown in Fig. 1(a), at 5 V (b), 10 V (c), 40 V (d), 70 V (e), and 140 V (f), respectively.

Download English Version:

https://daneshyari.com/en/article/7934761

Download Persian Version:

https://daneshyari.com/article/7934761

Daneshyari.com