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A B S T R A C T

This paper presents an N-state Markov-chain mixture distribution approach to model the clear-sky index. The
model is based on dividing the clear-sky index data into bins of magnitude and determining probabilities for
transitions between bins. These transition probabilities are then used to define a Markov-chain, which in turn is
connected to a mixture distribution of uniform distributions. When trained on measured data, this model is used
to generate synthetic data as output. The model is an N-state generalization of a previously published two-state
Markov-chain mixture distribution model applied to the clear-sky index. The model is tested on clear-sky index
data sets for two different climatic regions: Norrköping, Sweden, and Oahu, Hawaii, USA. The model is also
compared with the two-state model and a copula model for generating synthetic clear-sky index time-series as
well as other existing clear-sky index generators in the literature. Results show that the N-state model is gen-
erally on par with, or superior to, state-of-the-art synthetic clear-sky index generators in terms of
Kolmogorov–Smirnov test statistic, autocorrelation and computational speed.

1. Introduction

There is a challenge in quantifying, and reproducing, solar irra-
diance variability over time. Normalized solar irradiance, expressed as
the clear-sky index (CSI), has interesting statistical features, particularly
on minute to instantaneous scale (Bright et al., 2015). The distribution
of the clear-sky index is typically characterized by two or three peaks,
consequently modeling is often focused on mixture distributions to
construct realistic distributions (Hollands and Huget, 1983; Suehrcke
and McCormick, 1988; Hollands and Suehrcke, 2013; Munkhammar
et al., 2015; Widén et al., 2017).

Not only the probability distribution of the clear-sky index is of
interest in modeling the clear-sky index, but also the accuracy of tem-
poral variability is important (Bright et al., 2017). Time-series realism is
typically measured via autocorrelation function similarity over a set of
lags (Munkhammar and Widén, 2017a; Brinkworth, 1977; Skartveit and
Olseth, 1992). The autocorrelation function of the clear-sky index time-
series has been studied previously for instantaneous solar irradiance
(Munkhammar and Widén, 2017a; Brinkworth, 1977; Skartveit and
Olseth, 1992; Aguiar and Collares-Pereira, 1992; Hansen et al., 2010;
Munkhammar and Widén, 2018; Munkhammar and Widén, 2017b),
where the autocorrelation function has been shown to be positive and
follow an exponential slope for hour resolution (Skartveit and Olseth,
1992; Aguiar and Collares-Pereira, 1992; Hammer and Beyer, 2013),
while it has also been shown to have negative values for minute

resolution (Munkhammar and Widén, 2017a; Hansen et al., 2010;
Munkhammar and Widén, 2017b).

Models aiming to quantify the clear-sky index and generating rea-
listic synthetic clear-sky index data, including proper autocorrelation
function similarity, include Gaussian-Markov (Brinkworth, 1977), auto-
regressive Gaussian (Aguiar and Collares-Pereira, 1992), neural net-
works (Voyant et al., 2011), copula modeling (Munkhammar and
Widén, 2017a; Munkhammar and Widén, 2017b), fractal cloud mod-
eling (Lohmann et al., 2017) and Markov-chains (Bright et al., 2015;
Morph, 1998; Aguiar et al., 1988; Palomo, 1989; Ngoko et al., 2014).

These clear-sky or clearness index generators are practical, since
they use some existing data set of lower resolution or averaged clear-
sky index or clearness data to estimate higher resolution data (temporal
or spatial), see e.g. (Bright et al., 2015; Bright et al., 2017; Morph,
1998; Ngoko et al., 2014; Wegener et al., 2012; Grantham et al., 2017),
or smaller amounts of clear-sky index data to generate unlimited
amounts of data (Munkhammar and Widén, 2017a; Munkhammar and
Widén, 2018; Munkhammar and Widén, 2017b). In particular Markov-
chains have been useful as clear-sky index generators, where (Ngoko
et al., 2014) generated minute resolution, while (Aguiar et al., 1988)
generated daily resolution. In Munkhammar and Widén (2018) a two-
state Markov-chain mixture probability distribution was used, while in
Morph (1998) a general model for generating clear and cloudy periods
was constructed. Generally, it should be emphasized that models for
generating synthetic clear-sky index data are useful complements to
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irradiation estimates from ground measurements or from satellite data,
see e.g. (Engerer et al., 2017), and software, such as Meteonorm (2017).

One conclusion from the literature is that designing a comparatively
simple and easily computable model that generates accurate synthetic
clear-sky index data is a challenge. Here Morph (1998) is a particular
example of a comparatively simple model with complex dynamical
output. It was based on two-states, like the two-state Markov-chain
mixture model, and it was hypothesized that an N-state model could
perhaps be used for obtaining higher time-series similarity
(Munkhammar and Widén, 2018).

This study aims to develop an N-state Markov-chain mixture dis-
tribution model for the clear-sky index. The model is a direct general-
ization of the two-state Markov-chain mixture distribution model re-
cently applied to generate synthetic clear-sky index time-series
(Munkhammar and Widén, 2018). The model is trained and tested on
solar irradiance data sets for Norrköping and Hawaii, which were also
used in Munkhammar and Widén (2017a) and Munkhammar and
Widén (2018). This model is a clear-sky index generator, similar to the
models in Munkhammar and Widén (2017a), Munkhammar and Widén
(2017b), Ngoko et al. (2014), Grantham et al. (2017) and Grantham
et al. (2018). Although also Markov-chain based, the model in this
study requires less input than the model in Ngoko et al. (2014), which
uses hourly weather observations including sea level air pressure, wind
speed, cloud base height and cloud cover. Also, only global horizontal
irradiance (GHI) is used, and not direct normal irradiance (DNI), like in
Grantham et al. (2017). The model utilizes clear-sky index data as input
for training the model similarly to the copula model (Munkhammar and
Widén, 2017a; Munkhammar and Widén, 2017b) and the two-state
Markov-mixture distribution model (Munkhammar and Widén, 2018),
and produces unbounded outputs of clear-sky index time-series data.

In comparison, however, the model is less mathematically and
computationally complex than for example the copula-based model in
Munkhammar and Widén (2017a) and Munkhammar and Widén
(2017b) or the model in Grantham et al. (2017). While the two-state
model in Munkhammar and Widén (2018) also had a method-part of
connecting clear and cloudy states to physical observables such as for
example duration of bright sunshine, the N-state generalization devel-
oped here lacks this physical basis, and is instead essentially a data-
driven computational tool.

This paper is organized as follows. In Section 2 the methodology,
including model and data, is presented. In Section 3 the results from the
model are presented, in Section 4 the results are discussed, and in
Section 5 conclusions are drawn.

2. Methodology

2.1. Markov-chain mixture distribution modeling

This study focuses on modeling the indeterministic temporal
variability of instantaneous solar irradiance, the clear-sky index, de-
fined as the variability of the solar irradiance when the deterministic
variability of the sun’s position on the sky dome has been removed.

Formally, the clear-sky index κ is defined as the ratio between the
measured global horizontal irradiance (GHI) G t( ) and the estimated
global horizontal clear-sky irradiance G t( )c over time t:

≡κ G t
G t

( )
( )

.t
c (1)

The Markov-chan mixture distribution model developed here is
based on the concept of a Markov-chain mixture distribution, which is
arguably a form of Hidden Markov Model (HMM), see (Murphy, 2012, p.
312) for more information on HMM. The model, as mentioned, is an N-
state generalization of a previously published two-state model
(Munkhammar and Widén, 2018). In that study, the clear-sky index was
divided into two states: clear and cloudy, where clear was defined as all

CSI values above a certain CSI threshold and cloudy for all CSI values
below that threshold. Each state was modeled with a probability dis-
tribution, and a Markov-chain was used to determine the transitions
between the two states, thereby making it a Markov-chain mixture
distribution. From this model synthetic time-series of the clear-sky
index were generated. See (Munkhammar and Widén, 2018) for more
information on that approach. Here follows an N-state generalization of
this model.

As in previous studies by the authors (Munkhammar and Widén,
2017a; Munkhammar and Widén, 2018; Munkhammar and Widén,
2017b) the clear-sky index is here modeled as a stochastic variable κ,
and the following mathematical construction defines an N-state
Markov-chain mixture distribution for a time-series bounded by real-
valued limits a b[ , ], where <a b:

= + + …+κ X Y X Y X YN N1 1 2 2 (2)

where Xi are determined by a Markov-chain and Yi are independent
stochastic variables. Let the Markov-chain be a homogenous temporal
Markov-chain with N states, where the outcome for each occupied state

∈i N[1, ] is defined by an ×N 1 vector = …X X X X[ , , , ]N1 2 of zeros with
the exception of position i which is set to 1, e.g. = … …X [0, ,0, 1, 0, ,0].
This makes the outcomes of the Markov-chain a Multinoulli distribution,
a categorical distribution, which in general is a stochastic variable that
can take on any of N number of elementary events (Murphy, 2012).

This construction makes each stochastic variable Xi automatically
Bernoulli distributed. Furthermore, let the stochastic variables Yi be
uniformly distributed on the interval − + − +− b a a b a a[ ( ) , ( ) [i

N
i

N
1 . The

combination of the categorical distribution for Xi and the particular
uniform distributions for Yi in Eq. (2) generates a stochastic variable κ,
which sampled for each time-step generates a time-series that samples
from the stochastic variable Yi at each time-step:

…Y Y Y Y Y Y[ , , , , , , ],1 1 3 4 1 5 (3)

where the chosen i for each time-step is dependent on the occupied
state of the Markov-chain state in that time-step. In terms of probability
distribution, this generates a probability density function f:
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where for ∈i N[1, ] one can define = − + = −−x b a a x b a N( ) , Δ | |/i
i

N
1

and = ⩽ < +P P x κ x x( Δ )i i i , which is equal to the stationary distribution
or stable state of the Markov-chain for state i, see (Cinlar, 1975, p. 243)
for information on stable states. x1/Δ is defined as the probability
density distribution of each uniform distribution. By definition of
probability densities f κ( )i , defined on the disjoint sets ∈ +κ x x[ , ]i i 1 , we
have the following:

∑ ∑= = ⩽ < +
= =

F κ f κ x P x κ x x( ) ( )Δ ( Δ )
i

N

i
i

N

i i
1 1 (5)

where F x( ) is the cumulative distribution function of κ, defined on
a b[ , ], and equal to unity for F b( ). The limit of letting → ∞N , and
thereby →xΔ 0, brings:

∫∑ ⩽ < + =
→∞ =

P x κ x x f x dxlim ( Δ ) ( ) ,
N i

N

i i a

κ

1 (6)

which equals the continuous limit version of the cumulative distribu-
tion function of f. The model, in conceptual and algorithmic terms, is
presented in Fig. 1.

The key to using this model is training it on a training data set; a
time-series of the clear-sky index. The first step is setting the number of
states N, then dividing the data set into N bins +x x[ , ]i i 1 for ∈i N[1, ].
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