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A B S T R A C T

The National Solar Radiation Database (NSRDB) has provided solar resource data for over 25 years. Its most
recent update, namely, physical solar model (PSM) version 3, generates half-hourly, gridded, satellite-derived
irradiance data with a spatial resolution of 4 km × 4 km, covering most of America. The total volume of the data
is over 40 TB. Since the main method to access the data is using API with a daily limit of 2000 requests, it would
require 1000 days to obtain one year of PSM data from approximately 2 million pixels. Furthermore, such a big
dataset is difficult to store and manipulate. In this regard, this paper empirically investigates the accuracies of
various kriging methods, so that a suitable, dimension-reduced (in space) dataset can be opted during various
spatio-temporal analyses, such as forecasting or monitoring network design.

1. Introduction

In the recent decades, solar resource assessment has shifted from
using mainly empirical modeling and data collected at ground-based
stations to using physical modeling and satellite-derived data. The
National Solar Radiation Database (NSRDB) is a well-known database
for solar resource assessment applications, with good spatio-temporal
coverage and data quality. Throughout the 25 years of existence of
the NSRDB, numerous updates have been made. Most noticeably, the
database has pioneered the area of resource assessment, and has
switched from a station-specific database to a database hosting
gridded satellite-derived products. Its most recent update, namely,
physical solar model (PSM) version 3 (Habte et al., 2017; Sengupta
et al., 2015; Sengupta et al., 2014), generates 30-min satellite-derived
irradiance over a regular grid with a spatial resolution of 4 km ×
4 km. The geographical coverage of PSM v3 extends to (25°W, 60°N)
in the northeast direction and (175°W, 20°S) in the southwest direc-
tion, covering most of America (both continents), whereas the tem-
poral coverage is 1998–2016.

Besides resource assessment, satellite-derived irradiance can be
used in a variety of ways. Whereas some applications require data from
a single pixel, e.g., sizing of a photovoltaic energy system, others re-
quire data over an area, e.g., forecasting or monitoring network design
(Yang et al., 2018). Due to its extensive spatio-temporal coverage, the
PSM data is enormous in size, over 40 TB. To that end, the first chal-
lenge faced by researchers who wish to perform spatio-temporal ana-
lyses on the PSM data is accessing the data (see below). Furthermore,
the PSM data is spatially rich, and such high spatial granularity is not
always desired. For example, in a spatio-temporal statistical forecasting

context, the many highly correlated time series from neighboring pixels
lead to a >p n regression problem that introduces instability to lasso-
based predictor selection (Yang et al., 2015). Therefore, a dimension-
reduced dataset is often desired.

A primary goal for dimension reduction is minimizing information
loss. The tradeoff between the reduced data size and its information
content thus needs to be carefully studied. In the present case, the di-
mension reduction is in the form of space, i.e., sampling fewer points
within an area, hence, spatial prediction accuracy naturally becomes
the most important evaluation criterion. Spatial prediction through
interpolation and extrapolation has been studied extensively in spatial
statistics (Cressie, 2015). In the field of solar engineering, there is also a
rich literature (e.g., Lorenzo et al., 2017, Rodríguez-Amigo et al., 2017).
In both spatial statistics and solar engineering, kriging—the optimal
prediction—has received most attention, and is constantly being vali-
dated as the best spatial prediction method. Kriging is thus used here to
predict the half-hourly PSM irradiance through various dimension-re-
duced datasets.

Kriging is often used for gap-filling tasks in various scientific do-
mains, such as remote sensing or meteorology, e.g., predicting aerosol
optical depth or ozone concentration at unobserved locations. These
works are typified by the many contributions from Noel Cressie and his
colleagues (e.g., Cressie et al., 2010, Noel and Gardar, 2008). The
reader is referred to the book by Cressie and Wikle (2015), and the
references therein, for a complete guide on kriging and its applications.
In this paper, kriging is used for a different task, namely, uncertainty
quantification.

The merit of this paper goes to the fact that it uses empirical evi-
dence to challenge the common misperception on equivalence between
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data amount and information content in satellite-derived irradiance
data. In various case studies below using lattices with lower resolutions,
the kriged irradiance reaches the same accuracy as the raw data. This
implies that the original dataset contains redundant information, and
can be subsetted (in the form of space) in many applications. Some
guidelines of subsetting the PSM data, spatially, are given towards the
end.

The remaining part of the paper is arranged as follows. Section 2
describes the PSM v3 data and the kriging experiment setup. Section 3
briefly reviews the kriging methodology in spatial statistics. Unlike in
other application papers where only the prediction equations and var-
iogram model function forms are given, I follow Cressie (2015) closely,
and provide a summary on modeling, prediction, and parameter esti-
mation of some commonly used kriging variants. Since satellite-derived
irradiance is often biased, its accuracy must be validated, and that is
performed in Section 4. Section 5 presents the main results of this
paper. Nevertheless, those results presented in Section 5 are apparent
errors (see below); the linkage between the apparent error and “true”
error is drawn in Section 6. Conclusions and recommendations follow at
the end.

2. Experiment setup

The PSM v3 data can be downloaded in three ways: (1) via the
NSRDB viewer, an online tool, (2) via API, and (3) via Globus, a re-
search data management service. Due to a download-file-size limit, the
manual method is convenient only if data at a single location, or over a
very small area, is needed. For the API approach, once an API key is
obtained—almost instantly after requesting—the user could download
data by specifying the text-string request parameters, such as attributes
(e.g., “dni,dhi,ghi”), names (e.g., “2016”), or interval (e.g., “60”). Since
the downloading can be automated by computer programs,1 the API
approach is used this paper. That said, the API approach is restricted to
use with only a single location, for a single year at a time. In this regard,
the third approach is suitable for downloading very large archives.

2.1. Data

Since the PSM data is difficult to be handled as a whole, a subset is
considered in this paper. More specifically, the 30-min data from the
year 2016 from 4100 regularly-gridded locations in California is used.
The grid has a spatial resolution of ° × °0.1 0.1 , or approximately 10 km
× 10 km. Whereas this data is used to fit the kriging models, data from a
separate set of 50 randomly chosen, non-coincident (with the fitting
lattice) locations is used for validation. The fitting lattice and validation
locations are shown in Fig. 1 (a).

2.2. Dimension-reduced lattices

To investigate the kriging accuracy under spatial dimension re-
duction, I consider two types of dimension-reduced lattice. The first
type has regular grids with lower spatial resolutions, as shown in Fig. 1
(b)–(d). It is noted that a grid cell is only considered to be valid if its
center falls within the geographic boundary of California. The spatial
resolutions for these dimension-reduced lattices are 0.2°, 0.3°, and 0.4°,
respectively. As a result, the numbers of fitting locations in these lat-
tices are 1039, 454, and 259, respectively.

The second type of lattice is irregular. To generate these lattices,
random locations are chosen from the initial 4100 locations. For the
purpose of comparison, the number of random locations in type-two
lattices follows the previous number of fitting locations. Voronoi dia-
grams are used for visualization—the fitting locations are the centers of

the partitions, as shown in Fig. 2 (a)–(c). Lastly, a lattice with only 50
points, see Fig. 2 (d), is used to test an extreme case, where the number
of fitting locations is rather small. In the subsequent text, the lattices
shown in the two figures are referred to as LATTICE1, ⋯, LATTICE8.

(a) Regular grid, res = 0.1 (b) Regular grid, res = 0.2

(c) Regular grid, res = 0.3 (d) Regular grid, res = 0.4

Fig. 1. Lattices of fitting data at 4 different resolutions (in degrees) in regular
grids. The numbers of locations used in kriging are 4100, 1039, 454, and 259 in
(a), (b), (c), and (d), respectively, whereas the 50 randomly chosen validation
locations are marked with dots.

(a) Irregular grid, #locations = 1039 (b) Irregular grid, #locations = 454

(c) Irregular grid, #locations = 259 (d) Irregular grid, #locations = 50

Fig. 2. Same as Fig. 1, but the lattices are irregular. The number of locations in
(a)–(c) follows the size of the previous lattices (see Fig. 1), whereas (d) uses
only 50 locations to picture an extreme scenario.

1 A python version is provided by NREL, and an R version is provided with
this paper.
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