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A B S T R A C T

The vertical straight pipes are a desirable technology for delivery daylight into interior spaces because this
concept benefits from luminance distribution of the whole upper hemisphere, including sunlight that is most
important source of light under clear sky conditions. Vertical pipes can transport sunbeams to deep interiors
independent of solar azimuth and/or room orientation. Currently, the tools for modelling different pipes are
widely available, but their accuracy decreases as the aspect ratio of a light-pipe increases. In sunny environments
with high solar altitudes and favorable clear skies the tubular light-guides allow to deliver daylight into deep
offices, halls, or even underground spaces in building cores. The optical efficiency of such systems strongly
depends on number of reflections the beams undergo on their path from the top to the bottom of a light pipe. In
general, dense-grid and high CPU requirements meet when accurate numerical predictions are required. Such
computations are non-attractive if intended for routine (mass) modelling.

In this paper we introduce an analytical solution to the optical efficiency of straight pipes that is applicable to
all aspect ratios and provides accurate predictions with very low demands on processor time. The new analytical
model is validated and benchmarked against accurate HOLIGILM calculations, while showing the percent de-
viations are kept below 10% for most cases studied.

1. Introduction

A couple of parametric studies indicate problems with daylight
availability in complex buildings situated in some geographical loca-
tions (Reinhart and Wienold, 2011; Dubois and Flodberg, 2013;
Cammarano et al., 2014). Daylight is largely missing in underground
spaces, building cores or deeper parts of interiors. Hollow circular light
pipes represent a common concept for delivery daylight into interior
spaces (Jenkins and Muneer, 2003; Aizenberg, 2009; Kocifaj et al.,
2012; Samuhatananon et al., 2011). Among various installations
(Edmonds, 2010; Taengchum et al., 2014), the tubular vertically di-
rected pipe is the most traditional design that still deserves a special
attention and further investigations because this is the only possibility
how to collect the light over the whole sky hemisphere (Al Marwaee
and Carter, 2006; Mohelníková, 2009; Malet-Damour et al., 2014;
Carter, 2014). A pipe bend can result in light losses (van Derlofske and
Hough, 2004) or even in blind angles at which the light beams are
unable to transit from the upper to the bottom interface (Kocifaj et al.,
2010). In contrast, a bend can also increase the efficiency of a pipe if
directed towards the sun, but this is only a singular momentary state.

The optimum conditions cannot be guaranteed for a whole day because
the light-guide is firmly embedded in the building roof, but the sun
traverses the sky on different paths depending on season and geo-
graphical position of a site. A zenith-directed straight pipe is a trade-off
between different duct configurations as it benefits from sunlight for
any sundisk position.

The energy losses are typically small if ratio of length to diameter
(so-called aspect ratio) is generally low for a straight pipe. This is be-
cause the light beams undergo only a few or even no one reflection
event on their path from the cupola to the light pipe base. This is why
most of empirical tools are quite successful in predicting the light pipe
efficiency (Jenkins et al., 2005). However, the luminous flux at the
bottom interface of a light pipe decreases rapidly as the aspect ratio
approaches large values and this trend does not change significantly
even if a tube is manufactured with internally high reflective surfaces.
Light transmission through long tubes is difficult to predict using simple
empirical tools and this is a reason for why these predictions diverge
from each other and only a few of them (accidentally) match the trend
which arise from exact computations. A use of exact numerical tools
might not be advantageous under some circumstances, e.g. in cases
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when express analysis of optical efficiency is needed. The light is
sometimes transported deeper into building – 10m or even deeper
below a ceiling level (Mayhoub, 2014; Garcia-Hansen and Edmonds,
2015). Usefulness of such a pipe in practical realizations strongly de-
pends on many factors, specifically internal coating and its reflectance,
surface imperfections, deflection from mirror-type reflectivity, etc.

Empirical tools are scarcely appropriate to model optical efficiency
of long pipes, thus exact solution methods are often the only way to
predict the luminous flux at the bottom interface of a light tube. In this
paper we introduce the first time the analytical solution to the problem
that is applicable to both, cloudy and cloudless sky conditions. The
latter is of high importance because the peak illuminance levels are
typically achieved in sunny days. The model developed here is based on
the standardized CIE skies in which a twin set of gradation functions
and indicatrix functions describes sky luminance distributions (Kittler,
1999).

2. Theoretical derivations

The optical efficiency η of a light-tube is computed as a ratio of the
luminous flux F2 passing through the bottom of the tube to the lumi-
nous flux F1 entering the top of the tube, i.e.

=η F
F

2

1 (1)

A transparent cupola mounted at the upper interface influences F1 and
F2 in the same way, thus having no effect on η.

Consider the height of the vertical cylindrical tube is H, while the
tube radius is R. Let r0 and φ0 are polar coordinates with r0 =0 being the
center of the coordinate system (i.e. the point in which light-pipe axis
crosses circular opening of the tube) and r0 = R is applicable to all
points at the edges of the circular cross-section. The luminous flux

=F i( 1,2)i through the upper and/or the lower aperture of the tube is
then
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where E r ϕ( , )i 0 0 is the illuminance at r ϕ( , )0 0 . For the upper aperture we
have
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where L α(ϑ, ) is the sky luminance at zenith distance ϑ and azimuth
angle α. Analogously, the illuminance at the light tube base is

∫ ∫=E r ϕ J ϕ r ϕ d dϕ( , ) (ϑ, , , )cosϑsinϑ ϑ
π π
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The luminance J from the tube as seen in direction ϕ(ϑ, ) is

=J ϕ r ϕ Lρ(ϑ, , , ) N r ϕ ϕ
0 0

( , ,ϑ, )0 0 (5)

where L is the luminance of a sky element, ρ is the reflectance of the
internal surface of light pipe, and N is the number of reflections. The
geometry relations and other information on the problem solved can be
found in (Kocifaj et al., 2008).

The number of reflections N (see Kocifaj et al., 2008) can be, after
some algebra, expressed as a function of r ϕ( ,ϑ, )0 . When we omit the Int
operation and apply adequate Taylor series expansion to some parti-
cular functions by the parameter r R ϕ( / )sin0 , we get the following real-
valued approximation
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where H R/ is double of what we know as aspect ratio (see e.g. Carter,
2002).

The luminous energy entering the tube is due to a non-trivial su-
perposition of diffuse light of sky and direct sunlight. The latter dom-
inates all light beams under clear sky conditions except for extremely
low sun positions. Therefore we analyze the contribution of direct
sunbeams and diffuse light of sky separately.

2.1. Direct sunlight

The zenith angle of a sunbeam is conserved on its path from the top
to the bottom interface of a vertically oriented straight pipe. However,
the azimuth angle of a light beam changes with each reflection event, so
the beams escaping the tube at its base typically have no preferred
direction if N is large. The directionality of light can, however, be an
important factor for short pipes, while having no effect on the luminous
flux. This is because of symmetry relations – the direction of light
beams below a pipe would change with the azimuth of sun, but the
luminous energy crossing the light-tube base would stay constant. We
take advantage of this model and replace the sundisk by a uniformly
bright solar almucantar that produces the horizontal luminous flux
equal to that produced by the sun. This tricky approach allows for
significant theoretical simplifications. The hypothetical luminance of
the solar almucantar is then simulated by a formula

= −L P δ
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where ϑS is solar zenith angle, Pv is the direct solar illuminance on
horizontal plane and δ (.) is the Dirac delta function. It can be easily
proven that Eq. (7) and the formula introduced by Kocifaj et al. (2008)
for sundisk yield the same horizontal illuminance Pv and the same fluxes
at the light tube base. No doubt that the luminous flux at the upper
interface of a light tube is

=F πR PS v,1
2 (8)

Using a simple algebra and after a bit of manipulations using Eqs. (2),
(4)-(7) we obtain
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=p 0.124573

=q 0.025514 (9)

where the values of p and q are results of numerical integration (not
shown here).

The optical efficiency of a straight vertical pipe for direct sunbeams
is then

= + +
+

η ρ pξ ρ qξ ρ(1 ln ln )S

ξ

S S

1
2 2 2S

(10)

Most importantly, Eq. (10) implies the light pipe efficiency is only
ruled by two parameters, specifically ξS and ρ. We expect the formula
(10) should work well if >ξ 2S and its accuracy will further improve
with increasing the length H for given R.

2.2. Diffuse light

The diffuse component of ground-reaching light has the most un-
certain contribution to the total light field. This is because the angular
distribution of scattered light strongly depends on many factors, such as
turbidity of atmospheric environment, microphysical properties of
aerosol particles, cloud distribution, and humidity. It is extremely dif-
ficult to model luminance distribution in such heterogeneous environ-
ment. A set of simplifications has been introduced of which the most
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