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A B S T R A C T

Photovoltaic (PV) systems’ monitoring and performance assessment are relevant tools to ensure its correct op-
eration. The standard methodology consists in determining irradiance in the plane of the array and convert it
into PV power, considering system efficiency. This work proposes an effective data-driven approach based on
past PV generation of the system being assessed and local measurements of solar radiation. Using local global
horizontal irradiance (GHI) measurements, model performance degrades with the difference in tilt between the
PV module and the pyranometer; when radiation is measured in the plane of the array (in this case for a
horizontal module) the data driven method is more accurate than the standard approach. The method was also
tested for a small-scale residential PV system context, replacing the local irradiation measurements by satellite
GHI estimates. Although errors increase significantly, the data-driven method outperforms the standard ap-
proach for all tilts.

1. Introduction

Photovoltaic (PV) technology is becoming cost-competitive in many
locations. Large scale deployment of PV systems heightens the need for
accurate assessment of their performance, for regular monitoring and
early detection of malfunctions, hence maximizing its power output.

The performance of a PV system is affected by several factors in-
cluding conversion losses at the module, cables and inverter, module
temperature, shading, soiling, or inverter malfunction. The most
common criteria for the assessment of PV systems’ performance are the
final yield (Yf) and the performance ratio (PR) parameters (Khalid et al.,
2016; Marion et al., 2005). The final yield gives an estimate of the
number of hours a system is expected to work at its rated power Eq. (1).
However, as it does not integrate the actual incident irradiance, this
value can vary greatly, depending on the location and the system or-
ientation/tilt.
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The performance ratio (PR) is the ratio between the effective and
expected generation, and corresponds to how much of the expected
generation the system generated Eq. (2).
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Properly managed PV plants achieve a PR up to 80–90% (Nordmann

et al., 2007; SMA, 2010) as there are unavoidable losses (e.g. thermal
and connection losses), with lower PR values indicating an under-per-
forming plant.

To determine the PR using Eq. (2), the effective generation can be
simply monitored using a data logger. The standard procedure to esti-
mate the expected generation is the use of a physical model of the PV
system, converting measured irradiance to PV power using conversion
efficiency and area of the modules, their orientation and tilt.

Most medium or large size PV plants install irradiance sensors with
the same tilt as the modules (Chouder et al., 2013; degli Uberti et al.,
2010; Marion et al., 2005; Sugiura et al., 2003) but this is economically
unfeasible for smaller-scale systems. Weather stations and satellites, the
most common sources for irradiance data usually yield horizontal ir-
radiance. When only horizontal data is available, a transposition model
has to be used to estimate irradiance at the module’s plane of array
(Taylor et al., 2015), often using software tools such as PVsyst (Burgess
et al., 2011).

When transposing global horizontal irradiance (GHI) to a specific
plane of array, its direct (or beam, BHI) and diffuse (DHI) components
need to be transposed and an additional reflected component needs to
be considered Eq. (3).
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where GPOA is the global irradiance on the plane of array, f1 and f2 are
the transposition functions for the direct component and diffuse com-
ponents, respectively, and f3 the additional reflected component. While
f1 is a matter of trigonometry, the other two depend on the (an)isotropic
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nature of the diffuse and reflected irradiance and the reflectivity of the
local environment.

The earlier diffuse radiation transposition models assumed that this
component was isotropic (Badescu, 2002; Koronakis, 1986; Liu and
Jordan, 1960), only depending on the variation in sky-view factor due
to the change in tilt (β). However, this simplistic approach tends to
underestimate global irradiance, in particular for equator-oriented
surfaces in clear-sky days. More refined approaches consider the ani-
sotropy of diffuse radiation (Gueymard, 1987; Hay, 1979; Perez et al.,
1990; Reindl et al., 1990). The Perez model is the most commonly used
due to its simplicity, good performance and its applicability to different
time scales. It estimates the diffuse irradiance at the plane of array
(DPOA) as
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hence describing the circumsolar and horizon enhancements by means
of empirically defined coefficients (F1, F2, a and b). The reflected
component is typically assumed to be the GHI multiplied by a constant
ground albedo, standardized according to the type of the ground.

These requirements for local solar radiation measurements are ex-
pensive, making it unfeasible for small-scale systems. Thus, several
methodologies deal with this issue by replacing irradiance data by
power records from an ensemble of PV systems.

Golnas et al. use measurements from neighbouring systems nor-
malized by their nameplate power and weighted by their distance and
correlation degree (Golnas et al., 2011). Engerer and Mills estimate the
PV clear-sky profile of an individual system (Engerer and Mills, 2014)
and assume that, in normal working conditions, its PV clear-sky index
(KPV) is similar to its neighbouring systems, independent of their rated
power and tilt/orientation. Thus, the expected generation for a specific
system is calculated by multiplying the clear-sky expectation by the
neighbour’s KPV. Killinger et al. propose projecting power between
differently-oriented PV systems (Killinger et al., 2016): power mea-
surements from a different system is first converted into the corre-
sponding GPOA; GHI, BHI and DHI are estimated by means of an itera-
tive process, inverting a transposition model while coupled with a
decomposition model; irradiance is then transposed to the assessed
system’s plane of orientation and reconverted to power. Marion and
Smith use the same method but propose a different approach to convert
PV power into GPOA (Marion and Smith, 2017). All these approaches
require knowing the modules’ technical details (e.g. rated power and
temperature coefficient), their tilt and orientation and temperature
measurements. They also depend on irradiance transposition models
which, in general, underperform in cloudy days, particularly for vertical
surfaces, and are significantly worse when a decomposition model is
used (Gueymard, 2009; Notton et al., 2006).

Lonij et al. proposed a data-driven performance assessment meth-
odology (Lonij et al., 2012) for residential PV systems, which relies only
on historical generation records from an ensemble of neighbouring
systems. Performance parameters are calculated based on both effective
and clear-sky working conditions from such an ensemble allowing the
detection of losses from shadowing, outages and cloud. However, this
depends on the modules being fairly similar in terms of tilt and or-
ientation. Additionally, the use of data from different PV systems raises
issues concerning data ownership rights (Berdugo et al., 2011).

The method proposed in this work seeks to circumvent both the
need for the PV system’s technical characteristics and fetching data
from different neighbouring systems. The expected generation of a PV
system is estimated from historical PV generation and GHI measure-
ments, either from local ground sensor or from satellite data.

The manuscript is organized as follows. Section 2 introduces the
proposed method, along with a baseline approach for comparison; the
details regarding the used data set; and the error metrics considered.
Results are shown in Section 3; sensitivity analyses are presented,

which motivate the inclusion of a bias-correction step; the impact of
replacing local measurements by satellite estimations is also assessed.
In Section Section 4 the main conclusions of this work are discussed.

2. Method

2.1. Proposed and baseline models

For solar forecasting purposes it is standard to convert either irra-
diance or PV power into its clear-sky index (KG or KPV, respectively),
indicating the sky attenuation when compared to clear-sky conditions
(CSG or CSPV) as shown in Eqs. (5) and (6) (Amaro e Silva and Brito,
2018). This is of relevant since it removes the easy to determine sea-
sonal variation and singles out weather-induced variability.
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The method proposed herein is based on the hypothesis that, if
measured at the same site, the clear-sky index estimated from either a
pyranometer or a PV system should be similar. If so, a pyranometer
would be a suitable sky condition estimator as it would be unbiased by
potential malfunctions of a PV system. Thus, the expected PV genera-
tion (PVexpected) of a certain system in normal operation conditions
could be estimated using Eq. (7). The fact that this approach is based on
the relationship between KG and KPV, so forth it will be designated as K2
method.

= ×PV CS K [W]expected PV G (7)

In this work, CSG and CSPV are estimated using Lonij’s model (Lonij
et al., 2012). This data-driven approach assumes that the clear-sky
expectation for every specific timestamp is the 85th percentile of the
values measured at that same hour over the previous 15 days, as shown
in Eqs. (8) and (9).

=CS perc G( ,0.85) [W/m ]G
2 (8)

=CS perc PV( ,0.85) [W]PV (9)

Since the estimation of both CSPV and KGHI avoid the need for any
technical data (PV system power, configuration, temperature coeffi-
cient, etc.), the proposed method bypasses many of the limitations
identified in the previous section: the need for a considerable set of
parameters and the data ownership rights that would be implied in an
approach based on generation from neighbouring PV systems.

For high temporal resolutions data, the clear-sky model may feature
high frequency noise. This noise was mitigated by applying a locally
weighted 2nd degree polynomial regression at each data point. Similar
to a moving average approach, weights are attributed to the neigh-
bouring data points based on how distant, time-wise, they are. The
weights are defined by a tricube function and then a 2nd degree
polynomial is applied based on these same weights and data points.
Fig. 1 shows that a filter considering only the 10% nearest points to
each data point fares better at the beginning/end of the day, while
considering 50% nearest points is more appropriate for the mid-day
period. Thus, the first range is applied for solar elevation angles below
15 ° and the second for higher solar elevations. Since this filter smooths
out over-irradiance and/or over-generation events, the 100th percentile
may now be considered in the clear-sky model.

To assess the relative performance of the model, the standard phy-
sical approach was implemented as baseline. PV generation at Standard
Test Conditions (PVSTC,phys) is estimated based on GHI data (transposed,
when needed, into GPOA using the Perez model (Perez et al., 1990) with
DHI data and assuming a 0.2 ground albedo, characteristic of grassy
fields (Stanhill, 1970)), and the modules’ rated power:
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