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A B S T R A C T

Short-term forecasts and risk management for photovoltaic energy is studied via a new standpoint on time series:
a result published by P. Cartier and Y. Perrin in 1995 permits, without any probabilistic and/or statistical
assumption, an additive decomposition of a time series into its mean, or trend, and quick fluctuations around it.
The forecasts are achieved by applying quite new estimation techniques and some extrapolation procedures
where the classic concept of “seasonalities” is fundamental. The quick fluctuations allow to define easily pre-
diction bands around the mean. Several convincing computer simulations via real data, where the Gaussian
probability distribution law is not satisfied, are provided and discussed. The concrete implementation of our
setting needs neither tedious machine learning nor large historical data, contrarily to many other viewpoints.

1. Introduction

Many scientific works and technological issues (see, e.g.,
Hagenmeyer et al., 2016) are related to the Energiewende, i.e., the in-
ternationally known German word for the “transition to renewable
energies.” Among them weather prediction is crucial. Its history is a
classic topic (see, e.g., Lynch, 2008 and references therein). Reikard
(2009) provides an excellent introduction to our more specific subject,
i.e., short-term forecasting: “The increasing use of solar power as a
source of electricity has led to increased interest in forecasting radiation
over short time horizons. Short-term forecasts are needed for opera-
tional planning, switching sources, programming backup, and short-
term power purchases, as well as for planning for reserve usage, and
peak load matching.” Time series analysis (see, e.g., Antonanzas et al.,
2016) is quite popular for investigating such situations: See, e.g., Bacher
et al. (2009), Behrang et al. (2010), Boland (1997, 2008, 2015a,b),
Diagne et al. (2013), Duchon and Hale (2012), Fortuna et al. (2016),
Grantham et al. (2016), Hirata and Aihara (2017), Inman et al. (2013),
Lauret et al. (2015), Martín et al. (2010), Ordiano et al. (2016), Paoli
et al. (2010), Prema and Rao (2015), Reikard (2009), Trapero et al.

(2015), Voyant et al. (2011, 2013, 2015), Wu and Chan (2011), Yang
et al. (2015), Zhang et al. (2015), …, and references therein. The de-
veloped viewpoints are ranging from the rather classic setting, stem-
ming from econometrics to various techniques from artificial in-
telligence and machine learning, like artificial neural networks.

No approach will ever rigorously produce accurate predictions, even
nowcasting, i.e., short-term forecasting. To the best of our knowledge,
this unavoidable uncertainty, which ought to play a crucial rôle in the
risk management of solar energy, starts only to be investigated (see,
e.g., David et al., 2016; Ordiano et al., 2016; Rana et al., 2015; Rana and
Koprinska, 2016; Scolari et al., 2016; Trapero, 2016). As noticed by
some authors (see, e.g., David et al., 2016; Trapero, 2016, this lack of
precision might be related to volatility, i.e., a most popular word in
econometrics and financial engineering. Let us stress however the fol-
lowing criticisms, that are borrowed from the financial engineering
literature:

1. Wilmott (2006) (chap. 49, p. 813) writes: Quite frankly, we do not
know what volatility currently is, never mind what it may be in the fu-
ture.
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2. According to Mandelbrot and Hudson (2004), the existing mathe-
matical definitions suffer from poor probabilistic assumptions.

3. Goldstein and Taleb (2007) exhibits therefore multiple ways for
computing volatility which are by no means equivalent and might
even be contradictory and therefore misleading.

A recent conference announcement (Join et al., 2016) is developed
here. It is based on a new approach to time series that has been in-
troduced for financial engineering purposes (Fliess and Join, 2009;
Fliess et al., 2011; Fliess and Join, 2015a,b). A theorem due to Cartier
and Perrin (1995) yields under very weak assumptions on time series an
additive decomposition into its mean, or trend, and quick fluctuations
around it. Let us emphasize the following points:

• The probabilistic/statistical nature of those fluctuations does not
play any rôle.1

• No modeling via difference/differential equations is necessary: it is a
model-free setting.2

• Implementation is possible without arduous machine learning and
large historical data.

A clear-cut definition of volatility is moreover provided. It is in-
spired by the mean absolute error (MAE) which has been proved already
to be more convenient in climatic and environmental studies than the
root mean square error (RMSE) (Willmott and Matsuura, 2005). This fact
is to a large extent confirmed by Chai and Draxler (2014) by Section
3.2, which shows that the fluctuations are not Gaussian. See, e.g.,
(Hyndman, 2006) for further theoretical investigations. Confidence in-
tervals, i.e., a well known notion in statistics (Cox and Hinkley, 1974;
Willink, 2013), do not make much sense since the probabilistic nature
of the uncertainty is unknown. We are therefore replacing them by
prediction bands.3 They mimic to some extent the Bollinger bands
(Bollinger, 2001) from technical analysis, i.e., a widespread approach to
financial engineering (see, e.g., Béchu et al., 2014; Kirkpatrick and
Dahlquist, 2010). To pinpoint the efficiency of our tools, numerical
experiments via real data stemming from two sites are presented.

Our paper is organized as follows. Time series are the core of Section
2, where algebraic nowcasting and prediction bands are respectively
presented in Sections 2.4 and 2.7. The numerical experiments are pre-
sented and discussed in Section 3. Considerations on future investiga-
tions are presented in Section 4.

2. Time series

2.1. Nonstandard analysis: a short introduction

Robinson (1996) introduced nonstandard analysis in the early 60’s
(see, e.g., Dauben, 1995). It is based on mathematical logic and vindi-
cates Leibniz’s ideas on “infinitely small” and “infinitely large” num-
bers. Its presentation by Nelson (1977) (see also Nelson, 1987 and
Diener and Diener, 2013; Diener and Reeb, 1989), where the logical
background is less demanding, has become more widely used. As

demonstrated by Harthong (1981),Lobry (2008), Lobry and Sari
(2008), and several other authors, nonstandard analysis is a marvelous
tool for clarifying in a most intuitive way various questions from ap-
plied sciences.

2.2. Time series and nonstandard analysis

2.2.1. A nonstandard definition of time series
Take a time interval [0,1]. Introduce as often in nonstandard analysis

the infinitesimal sampling

= = < < ⋯ < =t t t{0 1}ν0 1T (1)

where − ⩽ <+t t i ν,0i i1 , is infinitesimal, i.e., “very small.” A time series X
is a function �→T .

Remark 1. The normalized time interval [0,1] is introduced for
notational simplicity. It will be replaced here by a time lapse from a
few minutes to one hour. Infinitely small or large numbers should be
understood as mathematical idealizations. In practice a time lapse of 1 s
(resp. hour) should be viewed as quite small when compared to 1 h
(resp. month). Nonstandard analysis may therefore be applied in
concrete situations.

2.2.2. The Cartier-Perrin theorem
The Lebesgue measure on T is the function ℓ defined on ⧹{1}T by

= −+t t tℓ( )i i i1 . The measure of any interval ⊂ ⩽c d c d[ , ] ,T , is its length
−d c. The integral over c d[ , ] of the time series X t( ) is the sum

∫ ∑=
∈

Xdτ X t t( )ℓ( )
c d

t c d
[ , ]

[ , ]

X is said to be S-integrable if, and only if, for any interval c d[ , ] the
integral ∫ X dτ| |c d[ , ] is limited, i.e., not infinitely large, and, if −d c is in-

finitesimal, ∫ X dτ| |c d[ , ] is also infinitesimal.
X is S-continuous at ∈tι T if, and only if, ≃f t f τ( ) ( )ι when ≃t τι . 4 X

is said to be almost continuous if, and only if, it is S-continuous on ⧹RT ,
where R is a rare subset.5 X is Lebesgue integrable if, and only if, it is S-
integrable and almost continuous.

A time series �→:X T is said to be quickly fluctuating, or oscillating,
if, and only if, it is S-integrable and ∫ dτA X is infinitesimal for any
quadrable subset.6

Let �→X : T be a S-integrable time series. Then, according to the
Cartier-Perrin theorem (Cartier and Perrin, 1995),7 the additive de-
composition

(2)

holds where

• E X t( )( ), which is called the mean, or trend,8 is Lebesgue integrable;

• X t( )fluctuat is quickly fluctuating.

The decomposition (2) is unique up to an additive infinitesimal
quantity. Let us stress once again that the above mean is independent of
any probabilistic modeling.9

1 This fact should be viewed as fortunate since this nature is rather mysterious if real
data are involved.

2 At least two other wordings, namely “nonparametric” or “data-driven,” instead of
“model-free” would have been also possible. The first one however is almost exclusively
related to the popular field of nonparametric statistics (see, e.g., Härdle et al., 2004;
Wasserman, 2006), that has been also encountered for photovoltaic systems (see, e.g.,
Ordiano et al., 2016). The second one has also been recently used, but in a different
setting (see, e.g., Ordiano et al., 2017). Let us highlight the numerous accomplishments of
model-free control (Fliess and Join, 2013) in engineering. See for instance renewable en-
ergy Bara et al. (2017),Jama et al. (2015), Join et al. (2016), and agricultural greenhouses
Lafont et al. (2015).

3 We might also employ the terminology confidence bands. To the best of our knowl-
edge, it has been already employed elsewhere but with another definitions (see, e.g.,
Härdle et al., 2004).

4 ≃a b means that −a b is infinitesimal.
5 The set R is said to be rare (Cartier and Perrin, 1995) if, for any standard real number
>α 0, there exists an internal set ⊃A R such that ⩽m A α( ) .
6 A set is quadrable Cartier and Perrin (1995) if its boundary is rare.
7 The presentation in the article by Lobry and Sari (2008) is less technical. We highly

recommend it. Note that it also includes a fruitful discussion on nonstandard analysis.
8 “Trend” would be the usual terminology in technical analysis (see, e.g., Béchu et al.,

2014; Kirkpatrick and Dahlquist, 2010. It was therefore used by Fliess and Join (2009).
9 Let us mention that Cartier and Perrin (1995) also introduced the notion of martin-

gales (see, e.g., Williams, 1991) without using any probabilistic tool.
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