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A B S T R A C T

A real PV array combined with two storage solutions (B, battery, and H, hydrogen reservoir with electrolyzer-
fuel cells) is modeled in two geolocations: Oxford, UK, and San Diego, California. All systems meet the same 1-
year, real domestic demand. Systems are first configured as standalone (SA) and then as Grid-connected (GC),
receiving 50% of the yearly-integrated demand. H and PV are dynamically sized as function of geolocation,
battery size BM and H’s round-trip efficiency ηH .

For a reference system with battery capacity =B 10M kWh and =η 0.4H , the required H capacity in the SA
case is∼1230 kWh in Oxford and ∼750 kWh in San Diego (respectively, ∼830 kWh and ∼600 kWh in the GC
case). Related array sizes are 93% and 51% of the reference 8 kWp system (51% and 28% for GC systems). A
trade-off between PV size and battery capacity exists: the former grows significantly as the latter shrinks below
10 kWh, while is insensitive for BM rising above it. Such a capacity achieves timescales’ separation: B, costly and
efficient, is mainly used for frequent transactions (daily periodicity or less); cheap, inefficient H for seasonal
storage instead.

With current PV and B costs, the SA reference system in San Diego can stay within 2·104 $ CapEx if H’s cost
does not exceed ∼7 $/kWh; this figure increases to 15 $/kWh with Grid constantly/randomly supplying a half
of yearly energy (6.5 $/kWh in Oxford, where no SA system is found below 2·104 $ CapEx).

Rescaling San Diego’s array (further from its optimal configuration than Oxford’s) to the ratio between local,
global horizontal irradiance (GHI) and Oxford GHI, yields in all cases a 11% reduction of size and corresponding
cost, with the other model outputs unaffected. The location dependent results vary to different extents when
extending the modeled timeframe to 18 years. In any case, the variability stays within ± 10% of the reference
year.

1. Introduction

Non-constant output is a major obstacle towards a widespread ex-
ploitation of wind and solar photovoltaic (PV) generation (Boyle, 2012;
Steinke et al., 2013; Aghaei and Alizadeh, 2013; Denholm et al., 2016);
energy storage is widely seen (Section 2) as the necessary addition for
both the integration of large fractions of renewable electricity into the
power Grid as well as the local utilization. Storage on the users’ side can
also free the Grid from the need of following demand. The price of
batteries was still relatively high at the beginning of the 2010s (Mulder
et al., 2013; Juul, 2012) but has then started to decline sharply; by
some analysts (Hensley et al., 2012), this decreasing trend is projected
to continue.

PV power is a typical example of highly inconstant renewable
generation. Time-variability of solar irradiance on the Earth surface is
due to the planet’s rotation and revolution, which in turn correspond to
separated timescales: day-night and seasonal cycles. The third source of
irregularity is due to weather and climate, and is superimposed to the

deterministic astronomical oscillations. It is termed intermittency in
renewables literature and has a prominent effect on PV output, parti-
cularly in cloudy regions (see for example Colantuono et al., 2014a).
Storage coupled to PV power must cope with these three sources of
variance. The growing field of research of Energy meteorology (Emeis,
2012; Kleissl, 2013; Olsson, 1994) testifies the importance of environ-
mental analysis for maximizing renewables’ output and quantifying/
reducing uncertainty (Correia et al., 2017; Prasad et al., 2015;
Colantuono et al., 2014b). Several authors have suggested to combine
various storage technologies to respond to such diverse timescales (e.g.
Zhou et al., 2011; Glavin et al., 2008). Studies coupling batteries and
hydrogen storage are reviewed in Section 2. Here, the same domestic
load (this choice is explained in Section 4.4) in two geographical lo-
cations is considered: Oxford, UK, and San Diego, California. Firstly,
demand is satisfied by PV (defined by the installed peak power) as the
only power source, integrated with two coexisting storage reservoirs,
schematized by their efficiency and cost: a long term hydrogen re-
servoir, H, coupled to electrolyzer and fuel cells, and a short term
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battery B. Capacity of H (HM) and PV array’s size are dynamically de-
termined as function of geolocation, BM and ηH : demand at every time
must be met, and the yearly-integrated value of demand must equal the
yearly-integrated value of generation, after conversion inefficiencies
have been taken into account. PV output and states of charge (SOCs) of
the storage reservoirs are expressed as function of time in both geolo-
cations. PV size is expressed by means of the scaling factor X , the
fraction of the 8 kWp array used as reference (see Appendix A and
Table 1). The partition of storage into a long-term reservoir and a short-
term, more efficient and smaller one is justified if a trade-off between
storage cost and conversion inefficiency is possible.

Current storage technologies possess various efficiency levels; here,
hydrogen H and battery B are characterized by their round-trip effi-
ciency values ηH and ηB. H efficiency is given three values:

=η 30%H ,40% and 50%, a range similar to what reported in Luo et al.
(2015, Table 11 therein), while the battery efficiency is fixed at

=η 85%B (ibid.). The latter value can fall either within the lithium-ion
(Rastler, 2010) or the lead-acid (Beaudin et al., 2010) efficiency in-
terval. The smallest ηH value is the closest to currently available elec-
trolysis/fuel-cell cycles; significant improvements may be expected
with standardization and mass production, as hydrogen storage is still
in the development phase (Luo et al., 2015). Engineering im-
plementation is, however, beyond the scope of this analysis, the focus of
which is energy balance. Environmental temperature is likely to impact
round-trip efficiency of storage but would be difficult to define, as it
depends not only on external temperature but also on buildings’ fea-
tures, placement of reservoirs within the property, resulting heat ex-
change with the environment, etc. The ample efficiency range we posit
for H is comprehensive of any potential effect, included the high un-
certainty on the performance that commercially-ready seasonal storage
systems will achieve.

PV generation is then supplemented by a Power Grid able to provide

only constant power. This scenario explores storage as a substitute of
the current load-following pattern (e.g. Moshövel et al., 2015); the
amount of long- and short-term storage needed on the user’s side to
accommodate such a constant supply is quantified. This idea is further
extended that a partly random power provision is fed by utilities to
domestic customers, to understand how users’ storage may cope with a
Grid that, besides not following demand, does not mitigate the varia-
bility on the supply side induced, for example, by wind and solar farms.

A simple CapEx analysis is then carried out, with the goal of com-
paring costs as system configurations vary in different geolocations.
Such estimates provide a clue about the financial penalty potentially
associated, across different Earth regions, with seasonal storage (and its
combination with other system’s components), the cost of which is
highly uncertain. Finally, a long-term (18 yr) irradiance analysis is
performed in both locations, to show how local irradiance variability
differs from place to place, and what this implies for system sizing.

The main goal here is to highlight geographical/climate differences
and the system behavior they induce as system’s configurations vary
through the parameter space. The sizing of a real system would have to
account, for example, for year-to-year differences in solar generation
and electricity consumption, failure rate, and other unpredictable fac-
tors; consequently, some form of uncertainty evaluation should be in-
troduced, e.g. loss-of-load probability (LOLP, discussed by Celik, 2007;
Klein and Beckman, 1987; Schenk et al., 1984, and many others). The
impact of differences in PV generation over many years is addressed in
Section 8, as well as the effect of varying demand. LOLP or similar
metrics are not estimated here, as this would not make substantial
contribution to frame the problem of multiple storage as function of
climate and geolocation.

2. Literature review

Analyses carried out on sizing/performance of battery-hydrogen
hybrid storage (BHHS) systems is reviewed in this Section. In very few
cases a comparison between different geolocations has been attempted
in the past: extant BHHS literature focuses on engineering im-
plementation, control strategies and dispatching rules rather than the
environment. Irradiance variability beyond the “typical year” assump-
tion of commercial energy models is scarcely addressed. The recent
paper of Zhang et al. (2017) points out the unsuitability of batteries and
the advantages of hydrogen storage (high energy density and negligible
leakage rate) to address irradiance seasonal imbalance affecting PV
generation. They locate the imbalance in “Nordic countries”; imbalance
is however significant everywhere on Earth, midlatitudes and tropics
included. Scamman et al. (2015) compare the behavior of PV with
BHHS in two geolocations: Heraklyon (with wind generation also pre-
sent), Greece, and Phoenix, Arizona; this paper recognizes (as, from a
different perspective, Cebulla et al., 2017) the importance of evaluating
the behavior of a combination of load, generation and hybrid storage
across different climates (performance in Reykjavik, Iceland, is also
examined, with electricity entirely generated by a wind turbine). The
case study therein considers a constant, 1 kW load; the authors con-
clude that their BHHS off-Grid system reduces the need for battery
capacity, prolonging also battery life; a typical year of solar irradiance
in each location is estimated using a commercial model. Marchenko and
Solomin (2017) uses real irradiance data for an off-Grid system close to
Lake Baikal, Russia; irradiance is measured during a time interval of
2 weeks per season and then extended using historical trends. Zhou
et al. (2008) establish the size of a stand-alone BHHS and a geolocation
comparison is carried out, dealing with modeled, 1-yr irradiance; the
foci of the paper are system’s engineering and dispatching rules. A si-
milar comment may be made about Jacob et al. (2018). Advancing
technology, rather than exploring the effects of environmental condi-
tions, is also the prevalent interest of Cau et al. (2014), Maclay et al.
(2007),Li et al. (2009), Jallouli and Krichen (2012), Kolhe et al. (2003),
Gomez et al. (2009). Ulleberg (2004) mainly addresses control

Table 1
Abbreviations and mathematical symbols. The latter can be either parameters or func-
tions of time, in which case time dependency is indicated explicitly. Generation γ is the
timeseries of either Oxford or San Diego, depending on the case being analyzed. It is
normalized to the yearly-integrated yield of the 8 kWp array considered for the Oxford
case study. The scale factor X determines the fraction of the reference array too be used in
each case. To visualize energy exchange, we assume H reservoir hierarchically “on top” of
battery B which, in turn, is “above” the demand-provision balance. We therefore label as
“uploaded” the power “going up” in this scheme (uB and uH ) and as “downloaded” the
power “going down” (dB and dH ). Electricity provision comes from PV in the SA case and
from PV plus Grid in the GC case.

Abbreviation Definition

TS Timeseries
SOC(s) Storage reservoirs’ state(s) of charge
B Battery
H Hydrogen Storage

Symbol Definition

S () Heaviside’s step function
=T 1year Length of the problem in time
≡ … … ≡t t t t T t0 , , , , /n N0 1 1 60 s time-steps; = ≡N T s/60 525600

≡d d t( )B B n “Downloaded power” from B to demand in kW

≡d d t( )H H n “Downloaded power” from H to B in kW

≡u u t( )B B n “Uploaded power” from PV/Grid to B in kW

≡u u t( )H H n “Uploaded power” from PV/Grid to H in kW

≡λ λ t( )n Electric power load in kW
≡γ γ t( )n 8 kWp Ref. PV generation (kW) (see caption)

≡δ δ t( )n Generation - demand difference in kW
X Scale factor of the 8 kWp Ref. PV array

B B≡ t( )n SOC of battery B in kW h
H H≡ t( )n SOC of hydrogen storage H in kW h
ηH Energy efficiency of hydrogen storage H
ηB Efficiency of short term storage B
Bm Battery minimum SOC threshold: 0.91 kW h
BM Battery capacity in kW h
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