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A B S T R A C T

We investigated the accuracy of numerical weather prediction (NWP)-based global horizontal irradiance (GHI)
and clear-sky index forecasting over southern Nevada. Accurate forecasts of solar irradiance are required for
electric utilities to economically integrate substantial amounts of solar power into their power generation
portfolios. Solar irradiance forecasting can enhance the value of renewable energy by anticipating fluctuations in
these variable resources. Summertime cloud variability depends largely on the combination of tropical and
extratropical synoptic-scale forcing, most of which is observable, predictable, and highly related to the North
American Monsoon moisture surge events. We used high-resolution realtime NWP output based on the weather
and research forecasting (WRF) model to study the ability of the model to deliver day-ahead GHI and clear-sky
index forecasts for a the National Renewable Energy Laboratory (NREL)-University of Nevada site, located in Las
Vegas, Nevada. High-resolution forecast products were obtained from the Desert Research Institute (DRI) ar-
chived real-time numerical weather forecasting products. Results showed the importance of developing a site-
specific seasonal and weather-dependent model output statistics (MOS) approach to improving forecast accu-
racy, which removes the bias and reduces the overall relative root-mean – square error (rRMSE) of GHI by as
much as 6%, when compared to the uncorrected model output; improving forecast accuracy is obtained by
adding information that relates regional-scale circulation patterns driving cloudiness, hence irradiance varia-
bility to the target area. We show the seasonal dependence of the NWP forecast accuracy and demonstrate that
intelligent weather functions provide a pathway to improve accuracy of solar forecasts further.

1. Introduction

Current solar forecasting technologies use a mixture of tools to
improve the forecast, ranging from statistical data approaches to phy-
sically-based deterministic and probabilistic models. Optimizing the
implementation of these tools to increase forecast accuracy can reduce
costs and increase the reliability of integrating solar power into the
electricity grid (Lorenz et al., 2009).

Numerical weather prediction (NWP) models are physically based
and generally the most accurate tool for solar global horizontal irra-
diance (GHI) forecasting for forecast windows lasting hours to several
days (Perez et al., 2013; Mathiesen and Kleissl, 2011; Jimenez et al.,
2016). Improved forecasting requires high quality and reliable real-
time data from widespread networks of upper-air and ground-based
instruments. These data define the model’s initial conditions using data
assimilation tools. Today, state-of-the-art, high-resolution NWP models
are capable of resolving clouds (stratiform and convective), fog-filling
valleys, orographic precipitation, and even local processes related to
the urban heat island effect. NWP systems such as NOAA’s High-

Resolution Rapid Refresh (NOAA-HRRR; Benjamin et al., 2004), the
Advanced Research-Weather and Research Forecasting model (WRF;
Skamarock et al., 2008), among other models, are becoming essensial
tools to provide critical information for various weather-related sectors,
including the energy industry. Nevertheless, stubborn sources of un-
certainty – because of imperfections in parameterization of the model’s
physics, chaotic behavior of the weather, complex topography, im-
perfect initial conditions, among other challenges – persist in NWP
systems, leading to model imperfections. Quantifying the model’s er-
rors, systematic and random, is then a necessary task to assess whether
its output is suitable to guide resource-management decisions.

Forecast post-processing approaches called model output statistics
(MOS) can improve NWP model forecasts (Perez et al., 2013) and have
proved to be more useful in correcting systematic biases (Perez et al.,
2013; Zhang et al., 2013a,b; Sengupta et al., 2015). MOS approaches
implement statistical regressions ranging from linear regression
methods to sophisticated machine-learning tools designed to perform
deeper error structure and pattern recognition for more intelligent NWP
output correction (Sharma et al., 2011; Lauret et al., 2014; Alessandrini
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et al., 2015). In general, all MOS approaches seek to optimize NWP
model output by relating locally or regionally observed parameters to
site-specific conditions (Badosa et al., 2015). Bias correction ap-
proaches are often implemented without careful consideration of the
source of the bias (a challenging task), however, and without con-
sidering regional or local physical processes responsible for cloudiness
variations in the region. Differentiating between error sources can be
important to selectively correct forecasts and create more accurate MOS
tools (Lauret et al., 2014).

Mejia et al. (2016) showed that cloudiness over the U.S. Southwest –
including New Mexico, Arizona, and southern Nevada – is related to
North American Monsoon (NAM; Adams and Comrie, 1997) synoptic-
scale wet spells called “moisture surges.” Moisture surges are ob-
servable and predictable weather patterns in the NAM region and are
modulated by different tropical and extratropical synoptic-scale fea-
tures – including inverted troughs, tropical easterly waves, eastern
Pacific tropical storms, tropical cyclones, and extratropical waves
(Higgins and Shi, 2001; Seastrand et al., 2014; Mejia et al., 2016).
These features predominantly occur during July-September and then
tend to increase monsoonal moisture transport through the Gulf of
California – reaching northwestern Mexico and the southwestern U.S.
and increasing moisure instability – leading to increased storminess and
organized convection in the region. We argue that this cloudiness drives
variability of solar resources in the southwestern US during the NAM.

Kim and Clarkson (2016) developed a study to improve GHI and
direct normal irradiance using an NWP model based on the WRF (with
aerosol interaction) over Arizona and showed that the model performed
poorly during the 2011 NAM season, likely related to the frequent but
variable nature of clouds during the 2011 NAM season. Here we argue
that forecast improvement for hours to day-ahead time windows can be
improved by conditioning the forecast products by developing a pro-
cess-based MOS that considers NAM moisture-surge episodes.

We focused on performing a detailed forecast accuracy assessment
of day-ahead GHI and clear-sky index (Kt∗) using real-time forecast
output from the NWP model based on the WRF. Specifically, we present
forecast comparisons against GHI observations from a site in Las Vegas,
Nevada. The accuracy assessment implements multiple forecast error
metrics that enable us to quantify the benefit and sensitivity of im-
plementing different MOS approaches and training techniques.
Specifically, the training technique determines parameter and site (or
region) specific bias correction quantities associated with composite
events characterized by canonical relative humidity state and regional-
scale flow regimes referred to as weather functions in this study.

2. Data and methodology

2.1. Evaluation observations

We used GHI surface observations from a National Renewable
Energy Laboratory (NREL)-University of Nevada, Las Vegas site (NREL-
UNLV; Andreas and Stoffel, 2006; 36.06° N, 115.08° W, 615m ASL).
The station provides observations at 1-min. time increments, ag-
gregated and synchronized using 1-h time increments to match the
model output. Of note is that observations were not categorized by
changes in GHI because of haze, smoke, or dust – which can be an
important source of GHI variations (∼10%; Zack, 2010) in the Las
Vegas region (Chow et al., 1999) and can impact model evaluation
procedures.

2.2. Clear sky index

A common parameter derived from GHI is the clear sky index (Kt∗).
The Kt∗ is defined as the ratio of irradiance to irradiance during clear
sky conditions at any given time (GHIclear). Kt∗ normalizes GHI between
0 and 1 (for clear sky conditions), reducing the potential of introducing
non-stationarities into the statistical approaches from the irradiance

diurnal cycle and seasonality (Voyant et al., 2015). In this study and for
simplicity, we estimated the GHIclear using the Ineichen and Perez clear
sky model with climatology parameters for the state of the atmosphere
(Ineichen and Perez, 2002; Reno et al., 2012) and using Holmgren and
Groenendyk (2016) procedures.

2.3. High-resolution NWP model

We implemented archived weather forecast data from the Desert
Research Institute (DRI) operational weather forecast system starting
August 1, 2015 and continuing to December 31, 2016. DRI performs
real-time, fine-resolution NWP simulations based on the Weather and
Research Forecasting model (WRF; Skamarock and Klemp, 2008;
Skamarock et al., 2008). The model domains are 18 km over the wes-
tern U.S., 6 km-nested domains covering California and Nevada, and
two nested domains at 2 km independently covering the Reno-Tahoe
and Las Vegas urban and suburban areas (Fig. 1).

The WRF configuration follows physics and integration strategies
shown in Dorman et al. (2013), with some modifications and different
domain-grid configuration outlined below. We designed the selection of
model setup through basic and common knowledge of the prevailing
physical processes that dominate regional climate variations over the
western U.S. (Leung et al., 2003; Rasmussen et al., 2011; Liou et al.,
2013; Silverman et al., 2013; Zhang et al., 2013a,b; Dorman et al., 2013).
A summary of the WRF model main configuration and parameters is
presented in Table 1. It is well known, however, that the selection of
optimal parameters and physics configuration for WRF is a challenging
task depending on many factors, including the following: initial/
boundary conditions, regional climate and its variability, and simulation
grid size (Liang et al., 2012; Diagne et al., 2014; Fernández-González
et al., 2015). Controlling all these factors and all the parameters involved
in the WRF as a real-time forecasting tool is outside the scope of this
report, requiring time and resources not available for this study. The
WRF is driven by initial and lateral boundary conditions provided by
Global Forecast Systems (GFS; http://www.emc.ncep.noaa.gov/GFS/
doc.php), while integrating the dynamic equations and physics para-
meterizations at the interior grids at finer spatial and temporal scales.
GFS is produced and periodically updated by the National Centers for
Environmental Prediction (NCEP). The horizontal grid spacing for GFS
data is 0.25 arc degree with 32 vertical layers, including lateral boundary
conditions of surface, atmosphere, and soil variables every three hours.
The GFS data assimilation system was updated in May 2016 to include a
dual-resolution hybrid four-dimensional ensemble-variational assimila-
tion system intended to improve the model’s initialization and forecast
accuracy. At the time of this study, we were not aware of any studies and
showing evidence of any improvements in the GFS system. Note that
these GFS changes could have introduced some systematic differences
and trends in the forecast error structure of this study. Our relatively
short period of simulated records prevents us from examining and ac-
counting for such potential differences. In this study, we assumed that
such differences were small and to the best of our knowledge, there are
no published results indicating that this assumption precludes our
methodological approach and assessment.

Zempila et al. (2016) and Ruiz-Arias et al. (2013) found that the
Dudhia scheme performs adequately under clear-sky conditions. If
aerosols are considered, however, Ruiz-Arias et al. (2013) suggested
that the RRTMg (a different shortwave parameterization approach
implemented within the WRF) tends to perform better than the Dudhia
scheme. The NWP systems described above does not consider aerosol
interactions with clouds and radiative processes, which could be im-
portant drivers of solar irradiance variability (on the order of 10%) in
the southwestern U.S. (Kim and Clarkson, 2016).

Real-time forecast products were produced twice per day (00 and 12
UTC). For this study, the model GHI and other ancillary forecast
parameters were retrieved using the nearest grid point to the NREL-
UNLV site. Day-ahead hourly GHI forecasts were archived consistently
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