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ARTICLE INFO ABSTRACT

The main contributor to spatio-temporal variability in the solar resource is clouds passing over photovoltaic (PV)
modules. Cloud velocity is a principal input to many short-term forecast and variability models. In this paper
spatio-temporal correlations of irradiance data are analyzed to estimate cloud motion. The analysis is performed
using two spatially and temporally resolved simulated irradiance datasets generated from large eddy simulation.
Cloud motion is estimated using two different methods; the cross-correlation method (CCM) applied to two or a
few consecutive time steps and cross-spectral analysis (CSA) where the cloud speed and direction are estimated
by cross-spectral analysis of a longer time series. CSA is modified to estimate the cloud motion direction as the
case with least variation for all the velocities in the cloud motion direction. To ensure reliable cloud motion
estimation, quality control (QC) is added to the CSA and CCM analyses. The results show 33% (52°) and 21% (6°)
improvement in the cloud motion speed (direction) estimation using the modified CSA and CCM over the ori-
ginal methods (without QC), respectively. In general, CCM results are accurate for all the different cloud cover
fractions with average relative mean bias error (rMBE) of cloud speed and mean absolute error of cloud direction
equal to 3% and 3°, respectively. For low cloud cover fractions, CSA estimates the cloud motion speed and
direction with rMBE and mean absolute error equal to 10% and 11°, respectively. However, for high cloud cover
fractions and unsteady cloud speed, CSA results are not reliable for 3-4 h time series; however, splitting the
whole time series into shorter time intervals reduces the rMBE and mean absolute error to 15% and 16° re-
spectively.
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2011; Marquez and Coimbra, 2013; Perez et al.,, 2012; Yang et al.,
2014a, 2014b; Lorenzo et al., 2014). Therefore, cloud motion estima-
tion has been extensively investigated recently (Bosch et al., 2013;
Bosch and Kleissl, 2013; Fung et al., 2013; Huang et al., 2013; Quesada-
Ruiz et al., 2014; Chow et al., 2015). Accurate cloud motion vectors are

1. Introduction
1.1. Motivation

The power output from solar photovoltaic (PV) power plants is

usually more variable than conventional power generation sources.
Variability is the main challenge for integration of large amounts of PV
power plants into the electricity grid (Marcos et al., 2011). The ability
to forecast actual variability of solar distributed generation (DG) will
allow grid operators to better accommodate the variable electricity
generation for resource adequacy considerations, such as scheduling
and dispatching of power.

Besides predictable solar variability according to diurnal and annual
irradiance patterns, the main source of spatio-temporal variability in
the solar resource is transient clouds and that variability is related to
the cloud optical depth and speed. Cloud motion is the main input to
most short-term solar variability and forecast models (Arias-Castro
et al., 2014; Hoff and Perez, 2010; Lave and Kleissl, 2013; Chow et al.,
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critical for solar forecast, interpolation, and variability analyses
(Jamaly and Kleissl, 2017).

1.2. Cloud motion estimation

Vega-Riveros and Jabbour (1989) reviewed various techniques re-
lated to the motion analysis and detection. Motion analysis methods are
either based on the direct numerical solution of the optical flow con-
straint equation (method of differentials) or correspondence-based ap-
proaches, where image features are identified and tracked to measure
their displacement. These measurements are then used to calculate the
displacement of the object as a whole. Estimating cloud motion for sky
imaging and satellite data by solving the optical flow equation incurs
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less computational expense. However, it has many restrictions. There-
fore, most of the methods for estimation of the Cloud Motion Vectors
(CMVs) are developed using correspondence-based approaches. In
general, CMVs are obtained by first locating salient image features such
as brightness gradients, corners, cloud edges, or brightness temperature
gradients (Bedka and Mecikalski, 2005; Menzel, 2001). Then, assuming
the features do not change significantly over a short interval, CMVs are
computed by tracking the features in successive images.

CMVs have been obtained using sky imaging devices (Marquez
et al., 2013) for very short-term solar forecasts up to 20 min ahead.
Moreover, CMVs have been estimated from satellite imagery (Perez and
Hoff, 2013; Menzel, 2001; Hammer et al., 1999; Leese et al., 1971).
Escrig et al. (2013) applied multispectral tests and binary cross-corre-
lations for cloud motion estimation using geostationary satellite ima-
gery. They applied coherence and quality control tests to the resulting
motion vectors and proposed new thresholds for infrared and visible
tests. Fuh and Maragos (1991) developed a model for estimating the
displacement field in spatio-temporal image sequences that allows for
affine cloud shape deformations. The model is based on the block
matching method (which is based on the same principal as the cross-
correlation method presented later) and parameters were found using a
least-squares algorithm. Post-smoothing the velocity field via spatio-
temporal vector median filtering almost always improves the perfor-
mance of the matching algorithm. However, block matching has a
higher computational complexity.

Farnebick (2003) developed a method for motion estimation based
on a two-frame algorithm. The first step is to approximate each
neighborhood of both frames by quadratic polynomials. Then, a method
to estimate displacement fields from the polynomial expansion coeffi-
cients was derived. The main weakness of the algorithm is the as-
sumption of a slowly varying displacement field, causing discontinuities
to be smoothed out. Hammer et al. (1999) developed a statistical
method based on conditional probabilities to compute CMVs and pre-
dict solar radiation up to 2 h ahead. Lorenz et al. (2004) used a similar
method (applying extrapolation of motion assuming persistence of
cloud speed, size, and shape) to obtain solar radiation forecasts up to
6 h ahead. For longer forecast time horizons, non-linearities in atmo-
spheric motion and cloud formation and evaporation cause Numerical
Weather Prediction (NWP) models to outperform satellite-based CMV
forecasts (Perez et al., 2012). Arking et al. (1978) applied Fourier phase
difference technique which allows motion estimates to be made for
individual spatial frequencies related to cloud pattern dimensions.
However in the presence of mixtures of motions, changes in cloud shape
and edge effects, the cross-correlation scheme yields a more reliable
estimate of cloud motion than the phase difference technique.

Since CMV estimation by either sky imaging, satellite data, or NWP
lack granularity and computational efficiency, local ground measure-
ments of cloud speed are advantageous for short-term solar variability
and solar forecasting (Bosch et al., 2013). Bosch and Kleissl (2013)
showed that cloud motion can be detected from spatio-temporal irra-
diance or power measurements across a utility-scale PV plant from the
timing of cloud arrival at three different points.

1.3. The proposed method

Prior methods using ground data were predicated upon sparse data.
The analysis in this paper is motivated by the increased availability of
dense PV power output observations in urban areas with spatial re-
solution on the order of 100 s of meters. Actual PV power output can be
converted to clear sky index (see e.g. Engerer and Mills, 2014) and then
cloud motion could be estimated just like if the PV system was an ir-
radiance sensor. Therefore the success of two algorithms in detecting
cloud motion is estimated from simulated dense ground data: cross-
spectral analysis (CSA) and the cross-correlation method (CCM). In
CSA, the cloud speed and direction are estimated by cross-spectral
analysis of the irradiance data at some given locations (sites) through
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the domain (Inoue et al., 2012; Shinozaki et al., 2014). The CSA method
suggested by Inoue et al. (2012) and Shinozaki et al. (2014) is restricted
by the spatial arrangement of the sites such that the cloud direction
may be inaccurate if there are only a few distinct relative angles be-
tween the pairs of the chosen sites. To remove the restriction, a new
CSA approach for cloud motion direction is proposed by selecting the
direction with least variation for all the velocities in the cloud motion
direction.

In CCM, the cloud motion is estimated by comparing correlation
between spatial irradiance data at two or more time steps (Hamill and
Nehrkorn, 1993). The CCM suggested by Hamill and Nehrkorn (1993) is
generalized for cloud movement estimation using unstructured ground
measured data. Moreover, to compare the consistency of the method
when applied to different scales, CCM is applied by considering the
whole domain as well as smaller subdomains. Also, to ensure reliable
cloud motion estimation, quality control (QC) is added to the CSA and
CCM analyses including removing conditions with low variability and
less correlated sites.

The algorithms are tested only on simulated ground data, which is
advantageous because the true cloud speed is known. In real datasets
the true cloud speed is unknown and such data suffer from spatial
heterogeneity in surface and atmospheric conditions that manifests in
spatial differences in cloud motion vectors. Such heterogeneities can be
avoided in a simulated dataset and the cloud motion estimation results
are therefore expected to be more generalizable. In Jamaly and Kleissl
(2017) the CSA and CCM methods are applied to real data for spatio-
temporal interpolation or forecast of solar irradiance.

The datasets are described in Section 2. The cloud speed metho-
dology is described in Section 3. Results of the estimation of the cloud
motion are presented in Sections 4 and 5 concludes the paper.

2. Dataset

The analysis has been performed using two spatially and temporally
resolved simulated irradiance datasets generated from large eddy si-
mulation (LES). LES is a three-dimensional computational fluid me-
chanics technique that numerically integrates the Navier-Stokes equa-
tions. The momentum, temperature, and moisture transport is
simulated at each grid point. High spatial and temporal resolution al-
lows simulating the large turbulent motions in the atmospheric
boundary layer explicitly and LES therefore produces more accurate
wind, temperature, moisture, and cloud fields than other techniques.
Periodic boundary conditions in the horizontal directions are used to
represent an infinitely long, homogeneous domain that allows atmo-
spheric turbulence to develop in a realistic manner. LES is forced by a
geostrophic wind at the top of the domain. Surface fluxes of heat and
water largely determine the relative humidity in the boundary layer
and whether clouds will form. We apply the well-validated UCLA-LES
using the same settings as Ghonima et al. (2016). Simulated datasets are
considered since LES wind vectors at the average cloud height can be
considered as the reference cloud motion.

2.1. RICO simulation

In the first simulation, a spatial domain of 2540 m X 2540 m
(128 x 128 grid points) with boundary and initial conditions from the
rain in cumulus over the ocean (RICO) field study (vanZanten et al., 2011)
centered at 18.0°N, 61.8°'W is setup. The simulation is performed up to
4000 m height resolved by 100 grid points. The precipitating RICO case
with boundary layer moisture in the initial profile equal to 12.35 g/kg is
simulated. Following 4h of spinup, 10s liquid water path (LWP) ag-
gregated from cloud base to cloud top is output over a 30 min interval.
Also, a representative wind speed vector is output at each time step; the
two velocity components are u(x, y, z., t) and v(x, ¥, 2. t), where z is
average cloud height. The wind velocity is considered as the reference
cloud motion and compared against estimated cloud motion in Section 4.
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