
Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Intra-hour direct normal irradiance forecasting through adaptive clear-sky
modelling and cloud tracking

Viv Bone⁎, John Pidgeon, Michael Kearney, Ananthanarayanan Veeraragavan
School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4067, Australia

A R T I C L E I N F O

Keywords:
DNI forecasting
Cloud tracking
Concentrating solar power
Cloud motion vector

A B S T R A C T

Hybrid fossil-solar power cycles possess high solar-to-electric conversion efficiency and the potential to provide
stable power output without the need for costly storage systems. However, the power output of the concentrating
solar power (CSP) component of the plant can fluctuate in sync with intermittent direct normal irradiance (DNI).
For hybrid plants, the controllable fossil-fuel unit can be used to compensate for shortfalls in CSP output during
periods of light DNI intermittency or provide the entire plant output during periods of high DNI intermittency.
This fossil-fuel unit requires 5–10min to ramp its power output up or down to perform these balancing functions.
Thus, by accurately predicting future DNI, and hence CSP output, the fossil-fuel unit can guarantee stable plant-
wide power output during periods of intermittency.

This paper develops an intra-hour DNI prediction system using a ground-based cloud motion vector (CMV)
framework and real-time DNI measurements. This system comprises a clear-sky DNI model and a cloud fraction
prediction algorithm. The presented CSM is based on the Ineichen model (Ineichen, 2008), where the model
parameters are adaptively estimated from identified clear-sky DNI measurements over a moving window. For the
cloud fraction prediction model, this paper presents an enhanced “sector-ladder” method (Quesada-Ruiz et al.,
2014) that uses the weighted mean of circular quantities (Fisher, 1995) and autoregressive filtering to improve
cloud flow predictions. Furthermore, a method to forewarn against periods of high DNI intermittency using the
generated DNI predictions is presented.

The proposed DNI prediction system is evaluated using 37 days of sky-camera images and DNI data collected
over the summer of 2014/2015 at the University of Queensland. Over all test days, the adaptive CSM has an
average root mean square error of 3.06%, which represents a 19% improvement over a CSM that uses the
optimal model parameters from the previous day’s data. Additionally, the modifications to the cloud flow
prediction algorithm (the sector-ladder method) are shown to improve the cloud velocity prediction accuracy by
a factor of seven over a period of visually determined constant cloud velocity. We find the overall prediction
accuracy of the DNI prediction system to be statistically similar to the accepted short-term benchmark of per-
sistence; however, it performs more consistently over a range of weather conditions and is able to forewarn
against periods of impending intermittency with 93% accuracy. The latency from data collection to prediction is
less than 30 s, making the method eminently suitable for real-time applications.

1. Introduction

Hybrid fossil-solar power cycles, such as the integrated solar com-
bined cycle (ISCC), have the potential to provide stable power output
without the need for costly storage systems (Montes et al., 2011; Rovira
et al., 2013). These cycles consist of a concentrating solar power (CSP)
component and a fossil-fuel component, whose power outputs are
combined before being distributed to the electricity grid. The con-
trollable fossil-fuel component can be used to maintain a stable total
power output during periods of fluctuating CSP output caused by

intermittent solar irradiance. This component can compensate for the
shortfall in CSP output during periods of low intermittency or provide
the entire hybrid cycle output during periods of high intermittency.
However, typical fossil-fuel components, such as the gas turbine used in
the ISCC (Montes et al., 2011), require 5–10min to ramp power output
up or down. Thus, to enable the fossil-fuel component to perform this
balancing function, accurate CSP output predictions on the same
timescale are required.

CSP output is driven by the direct normal irradiance (DNI) received
at its collectors. Hence, accurate CSP output predictions require a
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thermodynamic plant model that relates DNI input to power output,
and the DNI predictions themselves. This paper focuses on the predic-
tion of DNI over horizons sufficient to predict CSP output 10min into
the future. Thus, this paper details the development of a new system
that uses sky-camera images and pyrheliometer (DNI sensor) data to
predict intra-hour DNI. In addition to predicting DNI, we present a
method to forewarn against periods of high intermittency. During these
periods, CSP output fluctuates rapidly, and thus a hybrid plant operator
may wish to switch to fossil-only generation in advance to guarantee
power output stability.

Many classes of DNI prediction methods exist. Each performs best
(i.e. minimises prediction error) on a different timescale. Persistence
methods perform best for prediction horizons of under 10min, while
ground-based cloud motion vector (CMV) methods perform best for
prediction horizons of between 10min and 1 h (Law et al., 2014;
Kleissl). However, persistence methods assume that the current level of
cloud cover persists for the entire prediction horizon. This simplistic
assumption renders persistence methods incapable of predicting ramp
events – rapid changes in DNI due to cloud motion – that are char-
acteristic of periods of intermittency. Hence, ground-based CMV
methods are the focus of this work.

Ground-based CMV DNI prediction methods comprise two separate
processes, known as the ‘cloud fraction prediction process’ and the
‘clear-sky DNI prediction process’, whose outputs are combined to
generate DNI predictions. The cloud fraction prediction process in-
volves using sky imaging equipment to track cloud flow. This cloud
flow information is processed using computer vision algorithms to
predict future levels of sun-occluding cloud cover, expressed as a ‘cloud
fraction’ (Law et al., 2014). To predict DNI, cloud fraction predictions
are combined with ‘clear-sky DNI’ predictions (Law et al., 2014;
Quesada-Ruiz et al., 2014; Coimbra et al., 2013) – predictions of surface
level DNI for cloudless conditions. The complete DNI prediction process
is outlined in Fig. 1. The outputs of the clear-sky DNI and cloud fraction
prediction processes are combined according to
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where Bclr and Cf are the outputs of the clear-sky DNI and cloud frac-
tion prediction processes respectively, at time t for the prediction hor-
izon Hp.

Clear-sky DNI prediction processes make use of so-called ‘clear sky
models’ (CSMs) which predict clear-sky DNI at a specific time and lo-
cation. CSMs predict incident DNI at a specific time and place on the
Earth’s surface for cloudless conditions. Clear-sky DNI depends on ex-
traterrestrial solar irradiance and the degree to which this irradiance is
attenuated during transmission through the atmosphere (Law et al.,
2014). High-fidelity CSMs such as REST2 (Reno et al.) and Solis
(Mueller et al., 2004) use numerous atmospheric parameters to model
this attenuation accurately. These high-fidelity CSMs, however, face a
limitation in that they require an array of costly meteorological sensors
to measure these parameters. This paper develops a more cost effective
clear-sky DNI prediction process that requires only a single DNI sensor.

The clear-sky DNI prediction process presented here employs a
simplified adaptation of the Solis model (henceforth known as the
Ineichen model) (Ineichen, 2008) which uses only three atmospheric
parameters and solar position as inputs. Values for these atmospheric
parameters are periodically updated through an estimation process,
rather than from direct measurements. This estimation process involves
classifying incoming DNI measurements into ‘clear sky’ and ‘non clear
sky’ data sets and then estimating values for the atmospheric para-
meters such that the deviation between the predicted and measured
clear sky data sets is minimised within a moving window, similar to the
approach followed in Reno et al.. The parameter estimates obtained via
this estimation process are then used to predict DNI using the Ineichen
model. This allows the system to adapt to changing atmospheric con-
ditions throughout the day. We note that recent work (Engerer and

Mills, 2015) has shown that the ESRA model (Rigollier et al., 2000)
slightly outperforms the Ineichen model in Australia. The ESRA model
is equally amenable to the estimation process detailed in this paper, and
thus, the accuracy of the clear-sky DNI prediction process presented in
this paper could be marginally improved by using this model.

Cloud fraction prediction algorithms use sky imagers to track cloud
motion, enabling the level of sun occluding cloud cover to be predicted
(Bradbury and Fujita, 1968). Ground-based CMV methods consist of
two steps: (1) the cloud decision process and (2) the cloud motion
prediction process. The cloud decision process involves classifying raw
sky-image pixels as clear sky or cloud and the cloud motion prediction
process involves computing cloud velocity vectors over each sky image.
The cloud velocity vectors obtained in step 2 are used to advect the
cloud image obtained in step 1, thereby predicting future cloud cover.

Many cloud decision processes exist (West et al., 2014). Most
commonly, the ratio of red image channel to blue image channel
(known as the red-blue-ratio) is used to convert raw sky images into
binary (cloud or clear sky) or ternary (light cloud, thick cloud, or clear
sky) cloud images (Yang et al., 2014; Chow et al., 2011). Although
effective, this approach requires the maintenance of a so-called ‘clear-
sky library’, which contains the red-blue-ratio of all parts of the sky for
clear sky conditions, and an expensive sky camera with high dynamic
range and lossless compression (West et al., 2014). Alternatively, ma-
chine-learning classifiers can be used to generate cloud images from
various inputs including sky image colour properties, solar azimuth and
zenith, and estimated cloud movement between successive images
(West et al., 2014; Bernecker et al., 2013). This approach performs well,
even with inexpensive cameras, although it requires a user to manually
classify sky pixels as cloud or clear sky to generate training data. In this
paper, however, we use the existing EKO Instruments Findclouds soft-
ware (EKO Instruments) for cloud classification and focus on the cloud

Fig. 1. Ground-based CMV DNI prediction processes combine the outputs of two separate
processes, the ‘clear-sky DNI prediction process’ and the ‘cloud fraction prediction pro-
cess’, to predict intra-hour DNI. The clear-sky DNI prediction process predicts DNI for
cloudless conditions using sun position and atmospheric conditions. The cloud fraction
prediction process predicts future sun-occluding cloud cover using computer vision
techniques.
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