Solar Energy 135 (2016) 1-13

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Development of a sustainable methodology for life-cycle performance evaluation of solar dryers

SOLAR ENERGY

Mahmudul Hasan*, Timothy Alan Granville Langrish

Drying and Process Technology Research Group, School of Chemical and Biomolecular Engineering (J01), The University of Sydney, New South Wales (NSW) 2006, Australia

ARTICLE INFO

Article history: Received 26 November 2015 Received in revised form 20 May 2016 Accepted 22 May 2016

Keywords: Solar dryers Sustainable method Performance evaluation Performance indicators

ABSTRACT

An innovative methodology for the performance evaluation of solar dryers, which considers the total lifecycle (LC) energy effectiveness in present-value terms, has been proposed. In this method, the performance of solar dryers has been defined in terms of a set of performance parameters, called present value performance indicators (PVPIs). By applying the concept of unsteady-state mass and energy balances for solar kilns, and using known diffusion and heat transport equations from drying theory, a mathematical model was constructed and subsequently solved to predict the future thermal energy inflows and outflows as part of the assessment of the performance parameters. In order to illustrate the overall methodology proposed in this study, the model has been applied, as an example, to a case-study greenhouse-type solar kiln (i.e. Oxford) in the context of hardwood drying in Australia. The current methods used for the performance evaluation of solar dryers have also been reviewed, and it was found that the proposed method was likely to overcome the shortcomings and inadequacies of the current practices for assessing the performance of solar dryers. A sensitivity analysis was carried out in order to assess the robustness of the estimated performance indicators against the uncertain parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of solar energy for low-temperature commercial and industrial applications is increasing worldwide and being considered as one of the most promising areas for the utilization of solar energy (Janjai et al., 2011; Prakash and Kumar, 2014). Concerns regarding greenhouse gas (GHG) emissions (related to the rapid depletion of fossil fuels), together with drying being an energyintensive process, has prompted the development of solar drying systems on an industrial scale (Luna et al., 2009; Pirasteh et al., 2014; Romano et al., 2009; Sharma et al., 2009). However, the development of solar-drying technology, such as large-scale solar drying facilities, must be based on sound knowledge of the energy resource and the anticipated performance of the associated dryer (i.e. kiln) designs over the expected service life (Singh and Kumar, 2012). In the case of solar kilns, the selection process of kilns for a particular application is based on small-scale experimental testing to assess the kiln performance (Hasan and Langrish, 2014a; Langrish et al., 1997). One of the main difficulties for this experimental approach is the involvement of a large number of variables that vary in time and with the geographic location, as mentioned by Langrish et al. (1992) and Thibeault et al. (2010). Moreover, different drying materials have different drying properties (e.g. drying rates) even with the same environmental conditions. This situation makes it problematic to compare the performances between solar dryers of different designs based purely on experimental studies.

Over the last three decades, many numerical and experimental studies, including Aktaş et al. (2009), Jairaj et al. (2009), Romano et al. (2009), and Smitabhindu et al. (2008) for various solar dryers, have been carried out. Most solar dryers were designed for specific drying materials or climatic conditions. The simulation studies were also either type- and site-specific or did not consider long-run performance indicators. Thus, it is necessary to develop a robust methodology/tool that is capable of predicting and comparing the performances between the kiln designs with a range of drying materials, climatic conditions, and geographical locations. This approach may assist kiln manufacturers/designers in improving solar kiln designs and users in selecting appropriate dryers.

Literature reviews of existing performance evaluations for solar dryers reveal that, despite several simulation and experimental studies being carried out, no attempt has been made to develop a standard and robust LC performance evaluation method, so that it can be utilized for performance comparison between the kiln

^{*} Corresponding author. *E-mail addresses:* mhas8565@uni.sydney.edu.au (M. Hasan), timothy.langrish@ sydney.edu.au (T.A.G. Langrish).

Nomenclature

d	discount rate (%)	Evan	evaporation rate (kg s ^{-1})
ĨC	life-cvcle	Cond	condensation rate $(kg s^{-1})$
DPRP	discounted navback period (years)	сс.н. Т.,	nlate temperature (K)
F	future value of energy	Hyan	latent heat of vaporization ($I k \sigma^{-1}$)
FCV	future consumption value (I)	M/S	water spray rate $(\log s^{-1})$
FDV	future production value (J)	10	$\log \log r_{1} \log r_{1} \log r_{1}$
rrv D	nuture production value (J)		leakage late (kg S)
	present value of energy (j)	PVPI	present value performance indicator
NPVEEK	net present value to embodied energy ratio		
IKK	internal rate of return (%)	Greek sy	vmbols
MARR	minimum attractive rate of return (%)	η_p	pick-up efficiency (%)
MC	moisture content (kg kg ^{-1})	η_d	drying efficiency (%)
п	time into the kiln service life	η_{d1}	first-day drying efficiency (%)
Ε	modulus of elasticity (Pa)	η_{pd}	present drying efficiency (%)
NPV	net present value (J)	C_n	specific heat capacity of a component $(kg^{-1} K^{-1})$
Q	radiation energy flow rate (W)	C_{nt}^{P}	specific heat capacity of timber $(I \text{ kg}^{-1} \text{ K}^{-1})$
Α	surface area (m ²)	O_t	timber density (kg m ^{-3})
I_T	total solar radiation (W m^{-2})	k	timber thermal conductivity (W m ⁻¹ K ⁻¹)
G_{cb}	beam radiation	v	the slope angle (radians)
R_{b}	ratio of the beam radiation on a tilted surface to that on	0-	reflectance of the ground
5	a horizontal surface	Pg En	emissivity of the nanel
G_{cd}	diffuse radiation (W m^{-2})	τ	transmissivity of cover
h	heat transfer coefficient ($W m^2 K^{-1}$)	ßn	reflectivity of the papel
kc	thermal conductivity (W m ^{-1} K ^{-1})	PP BC	reflectivity of the cover
g	acceleration due to gravity (m s^{-2})	ρι	density of the air $(k \pi m^{-3})$
x	timber moisture content (kg kg ⁻¹)	ρ_G	dynamic viscosity of the air $(\log m^{-1} c^{-1})$
D	diffusion coefficient $(m^2 s^{-1})$	μ_G	thermal expansion coefficient (m m ⁻¹ V^{-1})
D	reference diffusion coefficient $(m^2 s^{-1})$	ρ	thermal expansion coefficient (III III K)
VR	venting rate $(kg s^{-1})$		
D _n	activation energy (K)	Subscrip	ts
DE 7	distance through the timber thickness (m)	f	floor
L NEDCD	not hopefit to loss ratio	air	internal air
TDCV	tetal present consumption value	nr	north roof
TPCV	total present consumption value	sr	south roof
TPPV	het present production value	па	north absorber
IPEL	total present energy losses	sa	south absorber
SG	solar gain (W)	intw	internal walls
CL	convection losses (W)	intf	internal floor
RL	radiation losses (W)	int	internal
M	thermal mass (J K ⁻¹)	w	walls
Т	temperature (K)	а	ambient
Y	air humidity (kg kg ⁻¹)	extsr	external south roof
E_n	net energy flow rate (W)	intsr	internal south roof
W_n	net water flow rate (kg s ^{-1})	extnr	external north roof
С	convection heat transfer (W)	intnr	internal north roof
TR	thermal radiation heat transfer (W)	inten	internal south absorber
SR	solar radiation heat transfer (W)	intna	internal north absorber
		mmu	

designs in present value terms. This paper first describes the state of the art for evaluating the performance of solar dryers. Based on the shortcomings and inadequacies of the prevailing procedures, a novel method for LC performance analysis of solar dryers has been presented in this paper.

2. State of the art

To assess the performance of different solar dryers, several methods and procedures, including Bucki and Perre (2003), Perré and Turner (2002), Romano et al. (2009), Smitabhindu et al. (2008), and Wan and Langrish (1995), have been reported in the literature. It was found by Chadwick and Langrish (1996) that cyclic drying (solar drying) of wood gave better quality products with a comparatively shorter drying period than continuous drying. The theoretical and experimental studies on the performance of solar

kilns for wood drying have been carried out by Khater et al. (2004) and Helwa et al. (2004), respectively. However, these studies were limited in their capacity to consider the variability of the ambient conditions and the likely change in the performance of the kiln over the system life time. Various testing methods and procedures, including the National Bureau of Standards (NBS) in United States, American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), and Federal Association for Solar Energy in Germany, for evaluating the comparative and absolute thermal performance of solar collectors were reviewed in Sodha and Chandra (1994). In these methods, the dryers were evaluated by measuring and comparing certain selected parameters, but no particular procedure was followed in these assessments.

In most of the recently-proposed methodologies for characterizing the performance of solar dryers (Altobelli et al., 2014; López-Vidaña et al., 2013; Singh and Kumar, 2012), parameters, such as the pick-up efficiency (η_p), the drying efficiency (η_d), the Download English Version:

https://daneshyari.com/en/article/7936628

Download Persian Version:

https://daneshyari.com/article/7936628

Daneshyari.com