

Available online at www.sciencedirect.com

Solar Energy 120 (2015) 72-86

www.elsevier.com/locate/solener

Simple calculation tool for central solar heating plants with seasonal storage

M. Guadalfajara, M.A. Lozano, L.M. Serra*

Department of Mechanical Engineering, Group of Thermal Engineering and Energy Systems (GITSE), Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura (Edif. Agustín de Betancourt), Cl María de Luna, sln, 50018 Zaragoza, Spain

Received 13 October 2014; received in revised form 28 May 2015; accepted 7 June 2015

Communicated by: Associate Editor Luisa F. Cabeza

Abstract

Central Solar Heating Plants with Seasonal Storage (CSHPSS) are able to produce thermal energy from solar radiation during all the year providing a significant part of the residential sector demands for Space Heating (SH) and Domestic Hot Water (DHW), using district heating systems. The yearly dynamic simulation is a complex process requiring local detailed climatic and demand data in order to properly design/sizing the plant components to reach the desired solar fraction. In this paper is proposed a simple method for the calculation of CSHPSS using demand data and easy to find available public climatic data. The proposed method is a useful tool to evaluate the CSHPSS system at early project stage as well as to perform parametric analysis in order to establish optimization and design criteria. The method is completely described and applied for a specific location in Spain to size the main components of the system which are the solar collector field area and the volume of the seasonal storage. It is also applied to perform a comparative analysis of CSHPSS located in different climatic areas of Spain. The obtained results reveal that the location of the plant and the different demands corresponding to different climatic areas affect very significantly the sizing and design criteria of CSHPSS.

Keywords: Solar thermal energy; Seasonal storage; Renewable energy; District heating; CSHPSS

1. Introduction

The World energy demand in the residential sector (2035 Mtoe) represents roughly 27% of the final energy consumption (IEA, 2014). The development of solar systems covering part of the thermal energy required in the residential sector is a viable option for reducing fossil fuel use and might solve an important part of the energy problems: shortage, dependency, high prices fluctuation, pollution and climate change, among others (IEA, 2012).

* Corresponding author. Tel.: +34 976 761913.

Central solar heating plants with seasonal storage can cover with a high solar fraction the space heating and domestic hot water demands of big communities at an affordable price. A very good example is Denmark, a country with a not high solar radiation, where a booming market for solar dictrict heating is occurring thanks to an appropriate legal and socioeconomic framework. In 2014 there were in Denmark more than 50 solar district heating plants in operation and the cost of heat produced in solar district heating systems without subsidies was lower than $0.05 \ e/kW h$ (Nielsen, 2014). The offer of thermal energy in periods of high solar radiation (summer) is coupled with high thermal energy demand for heating (winter), obtaining energy independence, non-renewable energy savings,

E-mail addresses: mateog@unizar.es (M. Guadalfajara), mlozano@unizar.es (M.A. Lozano), serra@unizar.es (L.M. Serra).

Nomenclature

A	solar collector area (m^2)
$A_{\rm acu}$	total surface area of the accumulator (seasonal
ueu	storage) (m ²)
D	seasonal storage tank diameter (m)
DD	monthly degree-days (°C day)
EA	stored thermal energy (MW h)
EA_r	stored thermal energy without max. temperature
л	limit (MW h)
$E_{\rm ff}$	heat exchanger effectiveness
Ĥ	monthly average daily global radiation horizontal
	surface $(MJ/(m^2 day))$
h	solar hour
$H_{\rm acu}$	seasonal storage tank height (m)
I_0	horizontal radiation (W/m^2)
т	month
m_s	solar field mass flow rate $(kg/(hm^2))$
N	number of month days
Ndwellin	gs number of dwellings
Q_b	solar contribution to immediate heat demand
	(MW h)
Q_c	solar thermal energy production at the solar
	field (MW h)
Q_d	heat demand (MW h)
$Q_{\rm DHW}$	domestic hot water heat demand (MW h)
Q_e	accumulator (seasonal storage) inlet thermal
	energy (MW h)
Q_g	auxiliary thermal energy (MW h)
Q_l	accumulator (seasonal storage) heat loss
	(MW h)
Q_r	incident solar radiation on tilted surface
	(MW h)
Q_s	accumulator (seasonal storage) outlet thermal
	energy ((MW h)
$Q_{\rm SH}$	space heating demand (MW h)
$Q_{\rm solar}$	solar heat consumed (MW h)
$Q_{\rm sx}$	maximum thermal energy available for discharge
	(MW h)
Q_x	solar thermal energy rejected (MW h)
T	temperature (°C)
Ta	hourly ambient temperature (°C)
$Ta_{\rm ave}$	monthly average of daily medium ambient
-	temperature (°C)
Ta_{\max}	monthly average of daily maximum ambient
T	temperature (°C)
Ta_{\min}	monthly average of daily minimum ambient
	temperature (°C)

$T_{\rm acu}$	water temperature in the accumulator (seasonal
	storage) (°C)
T_{c}	solar collector temperature (°C)
$T_{\rm DHW}$	domestic hot water temperature (°C)
$T_{\rm in}$	solar collector inlet water temperature (°C)
$T_{\rm max}$	maximum temperature allowed in the storage
	tank (°C)
T_{\min}	minimum temperature allowed in the storage
	tank (°C)
$T_{\rm net}$	monthly average temperature of water from net-
	work (°C)
$T_{\rm out}$	solar collector outlet water temperature (°C)
$T_{\rm ret}$	temperature of return water from the district
	heating (°C)
$T_{\rm sup}$	temperature of water supplied to the district
1	heating (°C)
$T_{\rm ter}$	ground temperature (°C)
$U_{\rm acu}$	global heat transfer coefficient (seasonal storage)
	$(W/(m^2 K))$
V	volume of the accumulator (seasonal storage)
	(m ³)
Greek symbols	
$ ho_g$	ground reflectance
β	solar collector tilt (0° is horizontal surface)

- γ solar collector orientation (0° is south oriented)
- y solar concertor orientation (o is south oriented)
- $\eta_{\rm acu}$ seasonal storage efficiency
- η_{coll} solar field efficiency
- $\eta_{\rm sys}$ system efficiency
- η_0 optical efficiency (solar collector)
- κ_1 1st order heat loss coefficient (solar collector) (W/(m² K))
- κ_2 2nd order heat loss coefficient (solar collector) (W/(m² K))

Abbreviations

- CSHPSS central solar heating plant with seasonal storage
- RAD ratio solar collector area/annual heating demand (m²/(MW h/year))
- RHD seasonal storage tank shape ratio (height/diameter)
- RVA ratio accumulator volume/solar collector area (m^3/m^2)

SF solar fraction

WCZ winter climatic zone

and reduction of CO_2 and pollutant emissions. Despite the lower solar resource, CSHPSS are spreading in countries where district heating already provides a large proportion

of the space heating demand, such as Denmark, Germany, Sweden and other central and northern european countries (SDH, 2014). Great potential exists for

Download English Version:

https://daneshyari.com/en/article/7937301

Download Persian Version:

https://daneshyari.com/article/7937301

Daneshyari.com