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a b s t r a c t

This paper presents the application of state-space airloads theory to a flexible airfoil
performing sinusoidal deformations at high Reynolds numbers. Given the two-
dimensional motion of a flexible airfoil, we derived the closed forms for the propulsive
force, lift force, generalized forces of pitching and bending as functions of reduced
frequency k, dimensionless wavelength z, and dimensionless amplitude A=ð2bÞ. We also
calculate the power required to perform this sinusoidal deformation and the propulsive
efficiency. Our results show a positive, time-averaged propulsive force for all k4k0 ¼ π=z,
which is when the wave speed is greater than the moving speed. At k¼ k0, which is when
the moving speed reaches the wave speed, the motion reaches a steady-state with all
forces being zero. When kok0, the system is the case of energy extraction in which the
drag force (negative propulsive force) and wake are causing the airfoil to vibrate. For the
propulsive case, the propulsive efficiency decreases from 1.0 to 0.5 as k goes to 1, or k0
goes to 0. If there were no wake, the propulsive force would be zero at wavelengths of
z¼0.569 and z¼1.3 for all k, and local optimum at z¼0.82. Though these extrema of
propulsive force with wavelength are smoothed out by the wake effect, one can still see
around z¼1.3 (k¼2.4) the slope transitions of all three powers in Fig. 9. When ko2:4, the
cost for high propulsion become more expensive as more power input is used by wake,
thus less efficiency.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the Ph.D. work of the first author (Ulrich, 2012), experimental measurements give numerical values for typical body
undulations of Caenorhabditis elegans swimming in viscoelastic fluids. Other literature on the locomotion of similar
spermatozoa and nematodes (at low Reynolds numbers) is quite extensive (Hancock, 1953; Gray and Hancock, 1955; Gray
and Lissmann, 1964; Karbowski et al., 2006; Korta et al., 2007). It is well-known that such creatures produce a sinusoidal
wave-like motion for locomotion at low Reynolds numbers. However, it is also observed that creatures operating at large
Reynolds numbers (such as sea snakes and fish) display a similar undulatory motion (Shine and Shetty, 2001; Maladen et al.,
2011). Therefore, it would seem appropriate to study the effect of sinusoidal undulations on locomotion at large Reynolds
numbers (i.e., in potential flow).

Indeed, the application of potential flow theory to fish swimming does have a rich history. Investigations go back to the
work of Lighthill (1960). The classic work on the locomotion due to thin-body, small deformations in potential flow is
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attributed to Wu (1971a,b). Later, others extended the work to large motions with further applications to the swimming of
fish (Melli-Huber et al., 2004; Melli, 2008; Kanso, 2009). All of these studies involve numerical solution of the potential-flow
equations. In fact, the initial work on small-motion locomotion (Wu, 1971a) has no figures or numerical results, and the
second work (Wu, 1971b) has only a few numerical results for optimum motions. Therefore, additional insight might be
gleaned if one could find closed-form solutions for the locomotion of a slender body in potential flow.

Recent developments in the theory of deformable airfoils offer the promise of developing such closed-form expressions
for the propulsive force, generalized deformation forces, and propulsive efficiency of a deforming airfoil in potential flow. In
particular, it has been shown that the generalized Theodorsen function (applicable to a rigid airfoil) can be written in terms
of simple state-variable equations (Peters et al., 1995; Peters, 2008). It has also been shown that this approach can be
extended to a completely deformable airfoil (Peters et al., 2007). The general Theodorsen function is, indeed, the same as
found in earlier work (Wu, 1971a) except that it is from state equations. The theory is particularly attractive because it is in a
closed-form matrix format that allows easy assembly with structural dynamic equations for a complete fluid/structure
interaction between the airfoil and the flow.

In the case of airfoil deformations limited to plunge, pitch, and trailing or leading-edge flaps, the theory has been shown
to reduce to classic theories for pitch and moment (Wagner, 1925; Theodorsen, 1934), for drag and propulsive force (Garrick,
1936), for unsteady free-stream (Issacs, 1945, 1946; Greenberg, 1947), and for rotary-wing loads (Loewy, 1957). The theory
has also been validated against experimental data and CFD results for airfoils with trailing-edge flaps in dynamic stall
(Ahaus and Peters, 2010; Ahaus et al., 2010). Thus, this theory has now found its way into the codes of Sikorsky, Bell
Helicopter, Advanced Rotorcraft Technology (Flightlab), and the U. S. Army (RCAS). However, the complete general form of
the theory for complete arbitrary airfoil morphing has not heretofore been exercised. Thus, application of the theory to
sinusoidal locomotion promises new and interesting insights into the locomotion problem.

The purpose of this paper is to show how this new, general formulation for deforming airfoils can yield closed-form
solutions for the propulsive force, generalized loads, and propulsive efficiency of airfoils undergoing sinusoidal locomotion.
These closed-form results are possible because the theory is developed rigorously from the potential flow equations by use
of a Glauert expansion (von Kármán and Burgers, 1935). The Glauert expansion is based on closed-form solutions to Laplaces

Nomenclature

A amplitude, m
b semi-chord, m
C(k) Theodorsen Function
CF coefficient of propulsive force or propulsive

power, CF ¼ �D=ð2πρbu2
0Þ

CF�no wake coefficient of propulsive force without wake
effect

CF�with wake coefficient of propulsive force with wake
effect

CL coefficient of lift force, CL ¼ L0=ð2πρbu2
0Þ

CL1 coefficient of generalized force of pitching,
CL1 ¼ L1=ð2πρbu2

0Þ
CL2 coefficient of generalized force of bending,

CL2 ¼ L2=ð2πρbu2
0Þ

CP coefficient of power required for airfoil defor-
mations, CP ¼ P=ð2πρbu3

0Þ
CW coefficient of power lost due to wake
ΔCF coefficient of propulsive force introduced by

wake alone
D drag per unit span, N/m
f frequency, Hz
h equation of deformation of a flexible airfoil,

down is positive, m
hn components of h in Chebyshev polynomials,

n¼ 0;1;2;…;1, m
i the imaginary unit
Im½� the imaginary part of a complex number
k reduced frequency, k¼ωb=u0

k0 critical reduced frequency, k0 ¼ π=z
L0 lift per unit span, N/m

L1 generalized force of pitching per unit span,
N/m

L2 generalized force of bending per unit span,
N/m

M the real part of 1�CðkÞ
N the imaginary part of 1�CðkÞ
P power exerted per unit span to move the

wing, N/s
Re½ � the real part of a complex number
t time, s
u0 x-velocity of flow relative to the reference

frame, m/s
wn components of total velocity field, m/s
(x, y) Cartesian coordinates of the reference frame, m
X normalized reduced frequency, X ¼ k=ðkþ1Þ
z the normalized wavelength, z¼ Λ=ð2bÞ
αn cosine factor of hn=b
βn sine factor of hn=b
ε power efficiency
Λ wavelength, m
λ0 the velocity due to shed vorticity, m/s
λα cosine factor of λ0=u0

λβ sine factor of λ0=u0

ρ density of surrounding fluid or air, kg/m3

τ reduced time, τ¼ u0t=b
φ Glauert variable, rad
ω angular frequency, ω¼ 2πf , rad/s
ð_Þ ∂ðÞ=∂t
ð€Þ ∂2ðÞ=∂t2
ðÞ′ ∂ðÞ=∂τ
ðÞ″ ∂2ðÞ=∂τ2
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