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Abstract

As the increasing energy demand and rapid depletion of conventional fossil fuel resources, renewable energy has caused great atten-
tion of the public. The main drawback of the renewable resources is their unpredictable nature. A hybrid renewable energy system
(HRES) that integrates different resources in proper combination is a promising solution to overcome this challenge. In this context,
the preference-inspired coevolutionary algorithm (PICEA) has been applied for the first time to the design of multi-objective hybrid
renewable energy system. We propose an enhanced fitness assignment method to improve the preference-inspired coevolutionary algo-
rithm using goal vectors (PICEA-g) in the optimization process minimizing, simultaneously, the annualized cost of system (ACS), the
loss of power supply probability (LPSP) and the fuel emissions. As an example of application, a stand-alone hybrid system including
PV panels, wind turbines, batteries and diesel generators has been designed to find the best combination of components, achieving a
set of non-dominated solutions from which the decision maker can select a most adequate one.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The worldwide rapid depletion of conventional energy
sources such as coal and natural gas has made it an urgency
to search for alternative energy resources to meet the pre-
sent energy demand. Alternative energy resources like solar
and wind have attracted energy sectors due to their advan-
tages over conventional energy sources such as a decrease
in external energy dependence and carbon emissions.
However, a common drawback of solar and wind energy
is their unpredictable nature and dependence on weather

and climatic conditions. A hybrid renewable energy system
(HRES), integrating different energy resources in a proper
combination, can overcome the problems caused by the
uncertainties of solar and wind. HRESs are becoming
increasingly popular both in theory and engineering due
to their higher reliability and lower cost.

The optimal design of HRESs is a multi-objective
optimization problem (MOP) in nature, that is, multiple
objectives need to be optimized simultaneously. Due to
the complexity of the optimal design of an HRES, tradi-
tional optimization methods cannot solve it either effec-
tively or efficiently (Dufo et al., 2007). Hence, different
meta-heuristics methods were developed to find the opti-
mal sizing of an HRES in the last decade. These studies
can be divided into single objective and multi-objective
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optimization problems according to the number of objec-
tives in the model. Single objective optimization problems
are considered in many articles, for example, genetic algo-
rithm (Koutroulis et al., 2006) and stochastic simulated
annealing algorithm (Giannakoudis et al., 2010) are used
to minimize the system cost objective, respectively.
Unlike single objective optimization, there are only a few
articles using MOPs for optimal design of an HRES.

Katsigiannis et al. (2010) developed a bi-objective opti-
mization model to generate Pareto front of an HRES min-
imizing the total cost and total greenhouse emissions

during its lifetime by using NSGA (Srinivas and Deb,
1994). An optimal sizing method based on genetic algo-
rithm (GA) was developed by Yanget al. (2008) to calculate
the optimum configuration of a hybrid solar-wind system
employing battery banks, which aims to achieve the
required LPSP with a minimum annualized cost of system
(ACS). Trivedi (2007) applied the multi-objective genetic
algorithm (MOGA) (Fonseca and Fleming, 1998) to solve
a nonlinear multi-objective optimization problem for
scheduling a wind/diesel system minimizing the fuel cost
as well as SO2 and NOx emissions. With a tri-objective

Nomenclature

PICEA preference-inspired coevolutionary algorithm
ACS the annualized cost of system ($)
LPSP loss of power supply probability
MOP multi-objective optimization problem
MOEA multi-objective evolutionary algorithm
SOC battery state of charge
d solar declination (�)
h earth’s inclination to the plane of its orbit (�)
h solar elevation angle (�)
u geography of the latitude (�)
s hour angle (�)
lt local time
St incident radiation on the tilted surface (W/m2)
S horizontal component of solar radiation (W/m2)
Sp solar radiation perpendicular to the tilted panel

(W/m2)
TC(t) cell temperature (�C)
TA(t) ambient temperature (�C)
NCOT nominal cell operating temperature (�C)
ISC short-circuit current (A)
ISC,STC short-circuit current under STC (A)
VOC open-circuit voltage (V)
VOC,STC open-circuit voltage under STC (V)
KI short-circuit current temperature coefficient

(A/�C)
KV open-circuit voltage temperature coefficient

(V/�C)
PM(t,b) power output of PV (W)
NP number of PV modules connected in parallel
NS number of PV modules connected in series
FF(t) fill factor
Cainv annualized cost of initial investment ($)
Caom annualized cost of operation and maintenance

($)
Carep annualized replacement cost ($)
Cinv initial investment cost of each component ($)
Com operation and maintenance cost ($)
Crep replacement cost of each component ($)
Pavail(t) available power supply at time t (W)
Pload(t) load demand at time t (W)
Femission fuel emissions (kg)

Ef emission factor
Pr

n(t) total power produced by renewable
PWG output power of wind turbine (W)
v wind velocity (m/s)
CP performance coefficient
q air density (kg/m3)
PWGR wind turbine rated power (W)
Vc cut-in wind speed (m/s)
Vr rated wind speed (m/s)
Vf cut-off wind speed (m/s)
Hwg wind turbine height (m)
vr measured reference wind speed (m/s)
Hr reference height (m)
c power law coefficient
Pbat(t) battery input/output power (W)
Vbus DC bus voltage (V)
gbat round-trip efficiency
Cn total nominal capacity of the battery bank (A h)
Nbat total number of batteries
nbs number of batteries connected in series
Cbat nominal capacity of each battery (A h)
Vbat nominal voltage of individual battery (V)
Fcons fuel consumption of a diesel generator (l)
Pr_dg generator’s rated power (W)
Pdg generator’s output power (W)
Fs the fitness of a candidate solution s
Fg the fitness of a preference g

ng number of solutions that satisfy the preference g

Gc goal vectors set after genetic variation
G initial goal vectors set resources (W)
PL

n(t) power consumed by the load (W)
Fobj objective function
Npv number of PV panels
Nwg number of wind turbines
Ndg number of diesel generators
b PV panel slope angle (�)
Hlow wind turbine tower lower limit (m)
Hhigh wind turbine tower upper limit (m)
SBX simulated binary crossover
PM polynomial mutation
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