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Abstract

This work illustrates the application to a simulated solar collector facility of a recently developed, comprehensive, predictive modeling
methodology for obtaining optimally predicted best-estimate results, with reduced uncertainties. The application of the very efficient
adjoint sensitivity analysis methodology (4S5S4 M) for nonlinear systems is also illustrated by computing exactly the first-order sensitivities
of selected facility responses to all model parameters. These sensitivities are used to rank the importance of parameters in contributing to
response uncertainties, and also serve within the predictive methodology as the weighting functions for propagating uncertainties of the
model parameters and for assimilating measurements and simulations. The results produced by the predictive modeling procedure are
optimally predicted values for the responses and for all model parameters, with reduced predicted uncertainties that are smaller than
either the measured or the computed uncertainties. The amount of reduction is controlled by the magnitude of the respective sensitivities:
the larger the magnitude of the sensitivities, the larger the reduction in the predicted uncertainties.

The predictive methodology presented in this work can be used for validating simulation models, and for designing and/or improving
the performance of experimental installations. Current limitations of this predictive modeling methodology are also highlighted, along
with ongoing work towards generalizing and significantly extending its applicability.
© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction and theoretical evaluations of various collector perfor-

mances have been richly addressed in the literature, e.g.,

The solar thermal collector (STC) is an essential compo- Benz and Beikircher (1999), Fischer et al. (2004),

nent of a solar thermal system, acting as a heat exchanger
to convert solar irradiance into internal energy of the trans-
port material flowing through the collector. Experimental
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Kalogirou (2004, 2006), Duffy and Beckman (2006),
Kratzenberg et al. (2006), Rojas et al. (2008), S6zen et al.
(2008), Zambolin and Del Col (2010), Ayompe et al.
(2011), Ayompe and Duffy (2013a, 2013b), and Xu et al.
(2012).

Although many works have evaluated the performance
of STCs, relatively few have investigated the effects of
uncertainties (see, e.g., Kratzenberg et al., 2006), or have
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used experimental information explicitly for improving the
modeling of STCs (see, e.g., Kalogirou, 2006). As is well
known, the results of measurements inevitably reflect the
influence of experimental errors. On the other hand, com-
putations are afflicted by errors stemming from numerical
procedures, uncertain model parameters, boundary and
initial conditions, and/or imperfectly known physical pro-
cesses. Therefore, nominal values for experimentally mea-
sured and/or computed quantities are insufficient, by
themselves, for applications. The quantitative uncertainties
accompanying the measurements and computations are
also needed, along with the respective nominal values.
Extracting “best estimate” values for model parameters
and predicted results (responses), together with “best esti-
mate” uncertainties for these parameters and responses
requires the combination of experimental and computa-
tional data and accompanying uncertainties. Such a combi-
nation process requires reasoning from incomplete,
error-afflicted, and occasionally discrepant information.

Differences between experimental and computational
results provide the basic motivation for performing quanti-
tative model verification, validation, and predictive model-
ing. Loosely speaking, “code/model verification” seeks
quantitative answers to the question “is the mathematical
model solved correctly?” “Codelmodel validation” seeks
quantitative answers to the question “does the model rep-
resent reality?”, comparing computational with experimen-
tal results (including computed and experimental
uncertainties in these results). The initial stage of predictive
modeling is to quantify the uncertainties from all steps in
the sequence of modeling and simulation processes that
lead to a computational model prediction. Typical uncer-
tainties stem from: (a) data biases and uncertainties in all
model parameters (including initial and/or boundary con-
ditions, external forcing functions, correlations, etc.), (b)
numerical errors, and (c) uncertainties due to lack of per-
fect knowledge of the processes being modeled. The second
step is to compute the sensitivities (i.e., the 1st-order func-
tional derivatives) of the responses of interest to all the
uncertain model parameters. The next step is to integrate
all available experimental and/or additional computational
data for the purpose of updating the parameters of the
model (“model calibration”) under investigation, and for
producing optimally predicted results, with reduced pre-
dicted uncertainties. Important issues to be addressed
include the estimation of discrepancies in the data, and of
the biases between model predictions and experimental
data. The state-of-the-art of data assimilation and model
calibration methods require a very significant computa-
tional effort. Reducing this computational effort is greatly
facilitated by using the adjoint sensitivity analysis method
(ASAM) for nonlinear systems, which was introduced by
Cacuci (1981a, 1981b, 2003; see also Farago et al., 2013).
The results of the predictive modeling analysis are
probabilistic descriptions of possible future outcomes
based on all available information, including errors and
uncertainties.

Cacuci and Ionescu-Bujor (2010) have recently pub-
lished a comprehensive predictive modeling methodology
for predicting optimal best-estimate values for model
responses and parameters (following the assimilation
experimental data and simultaneous calibration of model
parameters and responses), along with reduced predicted
uncertainties, for large-scale nonlinear time-dependent
systems. This predictive modeling methodology includes,
as particular cases, the “4D-VAR” data assimilation proce-
dures used in the geophysical sciences (see, e.g., Faragd
et al., 2013; Cacuci et al., 2005, 2013), and also provides
a quantitative indicator, constructed from sensitivity and
covariance matrices, for determining the consistency
(agreement or disagreement) among the a priori computa-
tional and experimental data.

This work presents an application of the predictive mod-
eling methodology developed by Cacuci and Ionescu-Bujor
(2010) to a simulated paradigm facility for analyzing the
efficiency of solar collectors. The computational modeling
of the simulated paradigm facility is presented in
Section 2. Section 3 presents the sensitivity analysis of typ-
ical computed and/or measured responses to the model
parameters characterizing the simulator. Notably, the
response sensitivities are computed using the very efficient
“adjoint sensitivity analysis methodology (ASAM)” origi-
nally developed by Cacuci (1981a, 1981b). These sensitivi-
ties are used to rank the importance of parameters in
contributing to response uncertainties. In Section 4 of this
work, these sensitivities are also shown to play a funda-
mental role as “weighting functions” for assimilating
additional experimental and/or computational data to
obtain “best-estimate” predicted values for the responses
and the model parameters. It will also be shown that the
predicted uncertainties in the predicted responses and
model parameters are reduced to values that are smaller
than either the experimentally measured or the computed
uncertainties. The amount of reduction in the predicted
uncertainties is controlled by the magnitude of the
respective sensitivities: the larger the magnitude of the sen-
sitivities, the larger the reduction in the predicted uncer-
tainties. Finally, Section 5 highlights the usefulness of the
predictive modeling methodology for validating simulation
models, and for designing and/or improving the perfor-
mance of experimental installations. Current limitations
of the predictive modeling methodology (Cacuci and
Ionescu-Bujor, 2010) used in this work also discussed along
with ongoing work aimed at alleviating these limitations,
which would significantly extending this methodology’s
applicability.

2. Mathematical modeling of a paradigm facility for
measuring collector efficiency

Flat-plate collectors (FPC) are widely used due to their
lower relative costs and easy handling (Rabl 1985). This
Section presents the modeling of a paradigm digital facility
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