

Available online at www.sciencedirect.com

SOLAR ENERGY

Solar Energy 118 (2015) 313-326

www.elsevier.com/locate/solener

A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes

F. Spertino^{a,*}, A. Ciocia^a, P. Di Leo^a, R. Tommasini^a, I. Berardone^b, M. Corrado^b, A. Infuso^b, M. Paggi^c

^a Politecnico di Torino, Energy Department, corso Duca degli Abruzzi, 24, 10129 Torino, Italy

^b Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, corso Duca degli Abruzzi, 24, 10129 Torino, Italy ° IMT Institute for Advanced Studies Lucca, Piazza S. Francesco 19, I-55100 Lucca, Italy

Received 24 April 2015; received in revised form 22 May 2015; accepted 25 May 2015

Communicated by: Associate Editor Nicola Romeo

Abstract

Recently, after high feed-in tariffs in Italy, retroactive cuts in the energy payments have generated economic concern about several grid-connected photovoltaic (PV) systems with poor performance. In this paper the proposed procedure suggests some rules for determining the sources of losses and thus minimizing poor performance in the energy production. The on-site field inspection, the identification of the irradiance sensors, as close as possible the PV system, and the assessment of energy production are three preliminary steps which do not require experimental tests. The fourth step is to test the arrays of PV modules on-site. The fifth step is to test only the PV strings or single modules belonging to arrays with poor performance (e.g. mismatch of current–voltage curves). The sixth step is to use the thermo-graphic camera and the electroluminescence at the PV-module level. The seventh step is to monitor the DC racks of each inverter or the individual inverter, if equipped with only one Maximum Power Point Tracker (MPPT). Experimental results on real PV systems show the effectiveness of this procedure.

© 2015 Elsevier Ltd. All rights reserved.

Keywords: Solar cell I-V mismatch; PV testing; Electroluminescence; Grid-connected PV system

1. Introduction

Today, after years of generous feed-in tariff with the consequent deployment of grid-connected photovoltaic (PV) systems, a new phase occurs in Italy, where a retroactive cut is in force for the amount paid on energy production (Italian Law). PV systems, characterized by sufficient energy production in the previous framework, are no more adequate to produce profits for the investors within the

* Corresponding author at: Politecnico di Torino, Energy Department, corso Duca degli Abruzzi 24, I-10129 Torino, Italy.

http://dx.doi.org/10.1016/j.solener.2015.05.033 0038-092X/© 2015 Elsevier Ltd. All rights reserved. new regulations. Hence, it is important to evaluate the losses in the energy production according to the different causes. The Building Integrated PhotoVoltaic (BIPV) systems are affected by a number of worsening phenomena (Chicco et al., 2014) such as: shading effects generated by near obstacles; thermal gradients from lower parts to upper parts of the roofs; impact of dirt for pollution; and non-optimal exposition to the Sun. But the most of photovoltaic capacity is composed of large PV systems mounted at ground level. These plants are characterized by: partial shading on the PV modules, if the mutual distances among the mounting structures were reduced to increase the land utilization; placement of PV modules too close to the

E-mail address: filippo.spertino@polito.it (F. Spertino).

Nomenclature

Acrony	ms	η_{PCU}	efficiency of PCU
ADAS	Automatic Data Acquisition System	$P_{M,k}$	maximum power of the k-th module in
BIPV	Building Integrated PhotoVoltaic		stand-alone operation (kW)
GMPV	Ground Mounted PhotoVoltaic	$P_{M,array}$, maximum power at STC after array connection
EL	ElectroLuminescence	,,	(kW)
IR	InfraRed	$\ell_{mis}^{(array)}$	relative power losses due to $I-V$ mismatch in a
MPPT	Maximum Power Point Tracker	mis	PV array
m-Si	mono-crystalline Silicon	G	solar irradiance (W/m^2)
p-Si	poly-crystalline Silicon	T_{a}	ambient temperature (°C)
PCU	Power Conditioning Unit	I_{sc}	short circuit current (A)
PID	Potential Induced Degradation	V_{oc}	open circuit voltage of PV generator (V)
PV	PhotoVoltaic	P_M	maximum power of PV generator (kW)
RMS	Root Mean Square	FF	fill factor
STC	Standard Test Conditions	P_{mpp}	maximum power after irradiance and tempera-
		11	ture corrections at STC (kW or W)
Symbol	Description	Imp	current at maximum power after irradiance and
Ĩ−V	current-voltage		temperature corrections at STC (A)
$E_{AC p}$	predicted daily energy delivered to the AC grid	V_{mnn}	voltage at maximum power after irradiance and
1	(kW h)	11	temperature corrections at STC (V)
$E_{AC m}$	monitored daily energy delivered to the AC grid	ΔI_{mpp}	current deviation at MPP with respect to data-
	(kW h)	11	sheet
\mathcal{E}_{p-m}	relative deviation between $E_{AC p}$ and $E_{AC m}$	ΔV_{mpp}	voltage deviation at MPP with respect to data-
$\dot{P}_{p,k}$	k-th peak power of PV array $(\vec{k}Wp)$	11	sheet
$\hat{Y}_{r,k}$	k-th reference yield on the plane of array	I_{ph}	photovoltaic current of solar-cell equivalent cir-
	(h/year)	•	cuit (A)
η_{therm}	thermal efficiency of the array	т	junction quality factor of solar-cell equivalent
γ	maximum power temperature coefficient of PV		circuit
	modules (pu/°C)	I_0	dark saturation current of solar-cell equivalent
T_c	cell temperature (°C)		circuit (µA)
ΔT	deviation of cell temperature from the STC va-	R_s	series resistance of solar-cell equivalent circuit
	lue (°C)		(Ω)
η_{array}	efficiency due to non-thermal losses of the PV	R_{sh}	shunt resistance of solar-cell equivalent circuit
-	array		(Ω)
η_{shade}	efficiency due to shading effect on the PV array		

ground with the inherent effect of dampness and dirt accumulation on the frame. As previously written, in Italy a simultaneous condition of high feed-in tariff and low price of PV modules triggered the installation of $\approx 11 \text{ GWp}$ in 2011. The supply of the components, PV modules and Power Conditioning Units (PCUs), was difficult with many delays. The need for speedy design and installation sometimes caused drawbacks summarized in the following bullet points:

- The mismatch between an optimal design and the installation has provoked the possibility of:
 - 1. Current-voltage (I-V) mismatch in the case of slightly different peak power in series connected modules of the strings connected in parallel inside a PV array.

- 2. Partial shading on the PV modules.
- 3. A non-optimal match between the peak power of the PV array and the rated power of the power conditioning unit (many times named "inverter").
- 4. Cracks in silicon solar cells due to improper handling during transportation and installation.
- The use of components, such as PV modules and PCUs, which are not of the best manufacturing quality and may exhibit underperformance (i.e. mismatch in the electrical parameters of the PV modules) during the outdoor operation, but are readily available on the market at the moment of the installation.

Most of the underperformance observed in the field is due to PV modules rather than to the other components.

Download English Version:

https://daneshyari.com/en/article/7937745

Download Persian Version:

https://daneshyari.com/article/7937745

Daneshyari.com