
Characterizing local high-frequency solar variability and its impact
to distribution studies q

Matthew Lave a,⇑, Matthew J. Reno b, Robert J. Broderick b

a Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, United States
b Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87123, United States

Received 18 March 2015; received in revised form 11 May 2015; accepted 21 May 2015
Available online 11 June 2015

Communicated by: Associate Editor Jan Kleissl

Abstract

Accurately representing the local solar variability at timescales relevant to distribution grid operations (30-s and shorter) is essential to
modeling the impact of solar photovoltaics (PV) on distribution feeders. Due to a lack of available high-frequency solar data, some dis-
tribution grid studies have used synthetically-created PV variability or measured PV variability from a different location than their study
location. In this work, we show the importance of using accurate solar PV variability inputs in distribution studies. Using high-frequency
solar irradiance data from 10 locations in the United States, we compare the ramp rate distributions at the different locations, use a quan-
titative metric to describe the solar variability at each location, and run distribution simulations using representative 1-week samples
from each location to demonstrate the impact of locational solar variability on the number of voltage regulator tap change operations.
Results show more than a factor of 3 difference in the number of tap change operations between different PV power variability samples
based on irradiance from the different locations. Errors in simulated number of tap changes of up to �70% were found when using
low-frequency (e.g., 15-min) solar variability.
Published by Elsevier Ltd.
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1. Introduction

Understanding the impact of interconnecting solar pho-
tovoltaics (PV) on a distribution electric grid is crucial to
efficient operation of the electric grid. Underestimating
the effects of PV can lead to grid damage and blackouts,
while overestimating the PV impact will unduly limit the

installations of this renewable energy resource. The main
concern about PV interconnection is that PV is a variable
generation resource; its output is not constant and depends
on the amount of incident solar radiation. This variability
can lead to voltage fluctuations which cause increased use
of regulation equipment (e.g., on-load tap changers) and
therefore increased grid maintenance costs (Ari and
Baghzouz, 2011).

To understand the impact of PV, it is necessary to
understand the local high-frequency solar variability.
High-frequency (30-s resolution or better) solar variability
data is critical since tap changers typically have time con-
stants shorter than 1-min, some as short as 30-s.
High-frequency solar variability has been quantified at a
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few specific locations previously: Woyte et al. (2007) used
up to 1-s irradiance measurements in Germany and
Belgium; Perez et al. (2012) used the 20-s measured irradi-
ance data from the ARM network in northern Oklahoma
and southern Kansas; Lave et al. (2012) used 1-s irradiance
measurements from a network in San Diego; and
Hinkelman (2013) used 1-s measured irradiance data from
Oahu, Hawaii.

Understanding the solar variability at a few select loca-
tions, though, may not be helpful to an operator whose dis-
tribution grid is not located near one of these known
locations. To create more high-frequency data, some stud-
ies have taken widely available low-frequency data and
downscaled it to represent high-frequency data. Wegener
et al. (2012), Hansen et al. (2011), Hummon et al. (2012),
and Hummon et al. (2013) have all presented methods
for producing high-frequency data from low-frequency
measurements. However, it is not clear that these down-
scaling methods will be accurate for distribution-scale
applications, as they were not intended for (Hansen
et al., 2011; Hummon et al., 2012) or were not
well-validated at (Wegener et al., 2012 and Hummon
et al., 2013) 30-s and shorter timescales.

The lack of representative, high-frequency solar vari-
ability samples has led some distribution simulations to
use synthetically-created solar variability profiles or mea-
sured solar variability from a different location than the
location of the distribution feeder under study. Godfrey
et al. (2010) assumed a synthetic PV power ramp of 10%
per second as representative of cloud transients, but did
not provide a physical justification for this ramp rate.
While that study focused on communications to dispatch
distributed storage units, they do mention that such a pro-
file would lead to a shortened life for the tap changer and
possible voltage quality issues on the feeder. Quiroz and
Reno (2012) used irradiance data from southern
Colorado for study of a feeder in central Utah. The irradi-
ance was scaled to account for the different intensity of
clear-sky irradiance between the two locations, and shifted
to represent the accurate sunrise and sunset times in Utah.
In both studies, since measured data was not available at
the feeder being studied, there was no way to know if the
variability profiles used were representative of the actual
variability.

The focus of this work is to show the importance of
using representative solar variability inputs when running
distribution grid simulations. In a related study, Bank
and Mather (2013) differentiated between clear and cloudy
days, and overall found that tap change operations were
higher on the clear days due to the larger magnitude of
PV power.

We explore the impact of different solar variability pro-
files collected at different locations on tap change opera-
tions. The 10 locations across the United States with
measured high-frequency irradiance that were used for this
study are described in Section 2. Section 3 discusses the
ramp rate definition we used and shows the ramp rate

distributions for each of the locations. In Section 4, we pro-
pose a variability metric that is useful for quantifying
high-frequency variability and use it compare both the
annual and daily variability between the different locations.
Section 5 presents results of distribution feeder simulations
to determine the number of tap change operations caused
by sample PV profiles for each of the 10 locations.
Finally, in Section 6, we present the conclusions describing
the importance of using representative solar inputs.

2. High-frequency data

We assembled a database of high-frequency (time reso-
lution of 30-s or better) global horizontal irradiance
(GHI) measurements from 10 different locations in the
United States. We chose to use GHI data to allow for
direct comparisons between the different locations. Plane
of array (POA) irradiance measurements with varying tilts
would make comparisons between sites impractical.

The site locations are shown on a map in Fig. 1, and
details about the date ranges of available data and time res-
olution of the data are listed in Table 1. Albuquerque
(PSEL) was collected at Sandia National Laboratories
while Albuquerque (Mesa) was collected approximately
10 km southwest. These two sites will allow for validation
of methods, as similar results should be obtained for each
site due to their close proximity.

As close to one year of data as possible was used to cap-
ture seasonal trends. The Albuquerque Mesa and Lanai
sites only had 11 months of data, but are still expected to
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Fig. 1. Map of high-frequency data.

Table 1
Data description.

Location Data Used Time Res. (s)

Albuquerque, NM (PSEL) 2/2013–12/2013 3
Albuquerque, NM (Mesa) 2/2013–12/2013 1
Boise, ID 5/2013–4/2014 10
Lanai, HI 2/2010–12/2010 1
Las Vegas, NV 1/2010–12/2010 1
Livermore, CA 12/2013–11/2014 2
Mayaguez, PR 9/2012–8/2013 1
Oahu, HI 3/2010–2/2011 1
Sacramento, CA 1/2012–12/2012 30
San Diego, CA 1/2011–12/2011 1
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