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A B S T R A C T

Strain deformations and piezoelectric effects greatly modify the band edge potential profile and
the symmetry of the semiconductor self-assembled quantum dot system, playing a critical role in
determining the material optical and electronic properties. In this paper, based on the continuum
elasticity model, we develop an easily implementable finite element method approach to cal-
culate the material displacement, strain, stress, piezoelectric effect, and their impacts on the band
edges of quantum dots. No matter the intrinsic symmetric level of the quantum dot geometric
shape, we show the maximum symmetry group of the Hamiltonian for an III-V group quantum
dot system is C2v. Orientation changes of the quantum dot in the crystal will lead to different
Hamiltonian symmetry even though the geometric symmetry groups are the same. We also notice
that for a symmetric quantum dot, such as a pyramid, its smallest band gap is normally not at the
geometric center, but at the base or near the top. Aspect ratio changes of quantum dots will lead
to apparent bandgap variations; however, conformal size changes of the quantum dots will not
result in visible bandgap modifications.

1. Introduction

Self-assembled quantum dots (QDs) have a wide range of applications in optoelectronic and quantum devices such as QD light
emitting diodes (LED), laser diodes and solar cells [1–3]. Strain effects, originating from the lattice mismatch between the QD core
and surrounding matrix, play an important role in QD formation and carrier confinement. Therefore, to have a clear understanding of
the QD material displacement, strain, stress and their consequence to the potential deformation is of great importance to study QDs'
electronic and optical properties. Currently, there are several popular approaches to study the strain related effects, including ato-
mistic models [4–6], numerical continuum elasticity models [7–9], and analytical models [10,11]. The atomistic model provides the
most accurate results. However, this approach also demands the most expensive computational resources. Additionally, a large
number of atomic input parameters are required; and some of those atomic parameters are not easy to obtain. On the other hand,
analytical approaches are easy to implement and efficient in computation, but this method's application range and accuracy are very
limited. For example, it is almost impossible to include various complicated geometric shapes and anisotropic effects analytically.
Recently, it has been reported that the analytical model can be calibrated based on accurate atomistic simulation results [13], but
unfortunately, the calibrated analytical model can only predict the strain effect at the center of the dots, not the whole strain profile
in the QD and matrix. As we know, the carrier bound state energies and wavefunctions are actually determined by the potential
profile as a whole. The numerical continuum elasticity model, treating the QD and matrix as continuous materials, is a good com-
promise between the computation complexity and accuracy. Compared with atomistic models, the numerical continuum elasticity
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model is much more efficient and also accurate enough for most applications. Unlike the atomistic model, the semiconductor
elasticity coefficients and band parameters, as the model inputs, are well documented and easy to obtain [14].

Because of crystal symmetry, self-assembled QDs tend to form highly symmetric shapes with the dot facet in a specific crystal
plane, such as pyramids [15–17]. By certain doping techniques, QDs can also grow to other symmetric shapes, such as lenses and half-
ellipsoids [17–20]. Therefore, group theory turns out to be a powerful tool to investigate the highly symmetric QDs [5,7,21,22].
However, it is noticed that the geometric symmetry of a QD is not identical to its Hamiltonian's symmetry because of strain and band-
mixing effects [5,7,21]. In this paper, starting from a continuum elasticity model, using the finite element method (FEM) [23], we
systematically investigate the potential symmetry reduction of a QD system due to strain and piezoelectric effects. Compared with
other numerical approaches, such as finite volume methods [5,7,8], FEM is more versatile and suitable for various QD geometric
shapes [9], and the boundary conditions can be naturally implemented and satisfied without any specific treatment. Additionally, our
approach is presented as a set of coupled partial differential equations (PDEs) instead of searching for the minimum strain energy
configuration [7,8], which makes the implementation with a FEM solver much easier. We can show for InAs/GaAs or other III-V
group zinc-blende crystal quantum dots, the maximum symmetry group for the Hamiltonian is C2v. This group has two symmetric
reflection planes: (110) and (110), which pass through the central axis of the symmetric QD, and one symmetric rotation of 180° along
the central axis. Any QD with these three symmetric operations will reach the maximum C2v symmetry independent of the QD's
original geometric symmetry group. However, if the geometric group only partially has or doesn't have these three symmetric
operations, the Hamiltonian's symmetric group will be reduced to the subgroup of C2v or have no symmetry at all. Besides symmetric
properties, strain deformation and piezoelectric potential profiles inside a QD are not homogeneous. In this research, it is noticed that
the minimum bandgap for a symmetric QD, such as a pyramid, normally is at the base or the top of the QD, not at its geometric center.
We also investigate the bandgap variations with different QD shapes and sizes.

Our paper is presented as following. In Section 2, we derive a set of detailed PDEs to calculate the QD material displacement,
strain, stress, piezo effect, and their effects on the band edge changes. In Section 3, we investigate the potential deformation profiles
inside the QD and matrix. In this part, we explain the symmetry reduction because of strain and piezoelectric effects and discuss the
bandgap variations due to QD size and shape changes. Finally, in Section 4, we give a brief conclusion.

2. Symmetric theory of strain, stress and strain induced potential energy change

For a QD embedded in the matrix, the strain tensor, which is of rank 2, can be defined as [10].
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In Eqn. (1), the superscript T denotes the transpose operation; ⇀ = ⇀ + ⇀ + ⇀u u e u e u ex x y y z z is the displacement vector from the
originally matched position; and εMM is the mismatch strain tensor due to the crystal lattice constant difference between the QD and
the surrounding matrix. εMM
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where aM, and aQ are the lattice constants of matrix and QD, respectively. From Eqn. (1), it is easy to show =ε εij ji. The stress tensor,
which is also of rank 2, is calculated by the following equation
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In Eqn. (3), C(4) is the fourth rank elasticity tensor;: denotes dyadic tensor product; and Einstein summation notation has been
used. For common semiconductor materials with a cubic crystalline such as InAs and GaAs, the symmetric relations reduce the
coefficients of C(4) to three independent terms C11, C12 and C44 [14,24]. Therefore, the stress tensor with =σ σij ji in Eqn. (3) can be
simplified as follows,
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