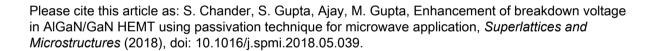
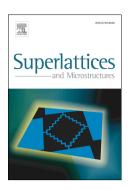
Accepted Manuscript

Enhancement of breakdown voltage in AlGaN/GaN HEMT using passivation technique for microwave application

Subhash Chander, Samuder Gupta, Ajay, Mridula Gupta


PII: S0749-6036(18)30992-3

DOI: 10.1016/j.spmi.2018.05.039


Reference: YSPMI 5706

To appear in: Superlattices and Microstructures

Received Date: 14 May 2018 Revised Date: 20 May 2018 Accepted Date: 21 May 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhancement of Breakdown Voltage in AlGaN/GaN HEMT using Passivation Technique for Microwave Application

Subhash Chander¹, Samuder Gupta², Ajay³, and Mridula Gupta⁴

^{1,2} Solid State Physics Laboratory, Defence R&D Organization (DRDO), New Delhi-110054, India ³Advanced Nanoelectronics Computation Laboratory, Department of Electronic Systems Engineering Indian Institute of Science, Bengaluru, Karnataka-560012, India

⁴Semiconductor Device Research Laboratory, Department of Electronic Science University of Delhi South Campus, New Delhi-110021, India.

¹subum1968@yahoo.co.in, ²samuder@yahoo.com, ³ajay.does@gmail.com and ⁴mridula@south.du.ac.in

ABSTRACT

The AlGaN/GaN High Electron Mobility Transistor (HEMT) on Silicon Carbide (SiC) substrate with SiO₂ passivation is proposed in this paper. The maximum drain current of 0.8 A/mm is observed at $V_{gs} = 0$ V for gate width (W_G) = 600 μ m. The breakdown voltage of device with SiO₂ passivation is compared with breakdown voltage of device with SiO passivation and it is found that the breakdown voltage improved in the device with SiO₂ passivation. The breakdown voltage of the device with SiO₂ and SiN passivation are 312 V and 287 V, respectively. Furthermore, the improvement in the breakdown voltage is observed with increase of buffer thickness. The obtained breakdown voltages are 312 V, 390 V and 412 V for buffer thickness of 2 μ m, 3 μ m and 5 μ m, respectively. In addition to breakdown analysis, the impact of passivation on intrinsic capacitance is investigated and found that the device with SiO₂ passivation exhibits a reduction in gate-source capacitance (C_{SG}) and gate - to - drain capacitance (C_{GD}).

Keywords: AlGaN, Breakdown Voltage, GaN, HEMT, High Power, High Frequency.

I. INTRODUCTION

AlGaN/GaN HEMT is a worthy candidate for high voltage, wide range of operating temperature and high frequency applications [1-3]. These attracting application capability of AlGaN/GaN HEMT is described to its superior physical properties, such as high sheet carrier density, higher thermal conductivity, wide band gap, high breakdown field, high electron mobility and high electron velocity [4]. In addition, the AlGaN/GaN HEMT have unintentionally doped two dimensional electron gas (2DEG) [5-6]. With these notable GaN

Download English Version:

https://daneshyari.com/en/article/7938573

Download Persian Version:

https://daneshyari.com/article/7938573

<u>Daneshyari.com</u>