Accepted Manuscript

Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

Lin Lu, Yu Zhang, Fujun Xu, Gege Ding, Yuhang Liu

PII: S0749-6036(18)30118-6

DOI: 10.1016/j.spmi.2018.04.011

Reference: YSPMI 5625

To appear in: Superlattices and Microstructures

Please cite this article as: Lin Lu, Yu Zhang, Fujun Xu, Gege Ding, Yuhang Liu, Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells, *Superlattices and Microstructures* (2018), doi: 10.1016/j.spmi.2018.04.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hightlights:

- A novel AlGaN-based LED structure for reducing separation of electron-hole wavefunctions distribution is proposed.
- By adjusting Al composition of the QWs to compensate energy band bending of the MQWs caused by strong polarization effect.
- The distribution of carriers are well modulated while increasing the degree of overlap of electron-hole wavefunctions.
- More efficient recombination between electrons and holes improving the internal quantum efficiency (IQE) as well as the light output power (LOP).

Download English Version:

https://daneshyari.com/en/article/7938627

Download Persian Version:

https://daneshyari.com/article/7938627

<u>Daneshyari.com</u>