Accepted Manuscript

The localized effect of the Bi level on the valence band in the dilute bismuth ${\rm GaBi}_{\rm x}$ ${\rm As}_{\rm 1-x}$ alloy

Superlattices

and Microstructures

Chuan-Zhen Zhao, Min-Min Zhu, Jun Wang, Sha-Sha Wang, Ke-Qing Lu

PII: S0749-6036(17)33038-0

DOI: 10.1016/j.spmi.2018.03.046

Reference: YSPMI 5576

To appear in: Superlattices and Microstructures

Received Date: 28 December 2017

Revised Date: 19 March 2018

Accepted Date: 19 March 2018

Please cite this article as: Chuan-Zhen Zhao, Min-Min Zhu, Jun Wang, Sha-Sha Wang, Ke-Qing Lu, The localized effect of the Bi level on the valence band in the dilute bismuth GaBi_xAs_{1-x} alloy, *Superlattices and Microstructures* (2018), doi: 10.1016/j.spmi.2018.03.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The localized effect of the Bi level on the valence band in the dilute bismuth GaBi_xAs_{1-x} alloy

Chuan-Zhen Zhao ^a, Min-Min Zhu, Jun Wang, Sha-Sha Wang, Ke-Qing Lu

(Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of

Electronics and Information Engineering, Tianjin Polytechnics University, Tianjin, 300387, China
)

Abstract: The research on the temperature dependence of the band gap energy of the dilute bismuth GaBi_xAs_{1-x} alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBi_xAs_{1-x} does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the Γ CBM of GaBi_xAs_{1-x}. The Γ CBM of GaBi_xAs_{1-x} is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the Γ valence band maximum (VBM) state of GaBi_xAs_{1-x} can be cancelled by the variation of the pressure coefficient for the Γ CBM state of GaBi_xAs_{1-x}.

Key words: $GaBi_xAs_{1-x}$; Bi level; Band gap energy; dilute bismuth PACS:, 78.20.-e, 78,20.Bh

_

a) Correspondence email as3262001@aliyun.com

Download English Version:

https://daneshyari.com/en/article/7939024

Download Persian Version:

https://daneshyari.com/article/7939024

<u>Daneshyari.com</u>