Accepted Manuscript

Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

Superlattices
and Microstructures

Yongqiang Kang, Hongmei Liu

PII: S0749-6036(17)32868-9

DOI: 10.1016/j.spmi.2017.12.046

Reference: YSPMI 5443

To appear in: Superlattices and Microstructures

Received Date: 05 December 2017

Revised Date: 26 December 2017

Accepted Date: 26 December 2017

Please cite this article as: Yongqiang Kang, Hongmei Liu, Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials, *Superlattices and Microstructures* (2017), doi: 10.1016/j.spmi.2017.12.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Wideband absorption in one dimensional photonic crystal with

graphene-based hyperbolic metamaterials

Yongqiang Kang^{1,2}, Hongmei Liu¹

1. Institute of solid state physics, Shanxi Datong University, Datong, Shanxi 037009, China

2. Xi'an Mengxibitan information technology limited company, Shaanxi 710049, China

Abstract

A broadband absorber which was proposed by one dimensional photonic crystal

(1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is

theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90%

of all available electromagnetic waves at a 14 terahertz absorption bandwidth at

normal incidence. The absorption bandwidth was affected by Fermi energy and

thickness of dielectric layer. When the incident angle was increased, the absorption

value decreased, and the absorption band had a gradual blue shift. These findings

have potential applications for designing broadband optoelectronic devices at mid-

infrared and THz frequency range.

** 1 1 1

Keywords: absorption; photonic crystal; graphene-based hyperbolic metamaterials.

1. Introduction

Recently, broadband high absorption efficiency has attracted much attention for

various technological applications such as solar cell, plasmonic detectors, and

efficient thermal emitters [1-4]. Graphene, a two-dimensional honeycomb monolayer

structure, has been shown to possess a variety of outstanding optical and electronic

properties [3,5,6]. It has been demonstrated that the absorptivity of an undoped

graphene single sheet is only 2.3%. In recent years, more and more people have

1

Download English Version:

https://daneshyari.com/en/article/7939154

Download Persian Version:

https://daneshyari.com/article/7939154

<u>Daneshyari.com</u>