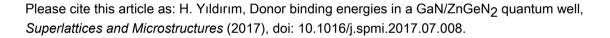
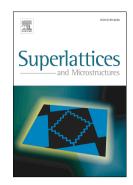
Accepted Manuscript

Donor binding energies in a GaN/ZnGeN2 quantum well

Hasan Yıldırım


PII: S0749-6036(17)31172-2

DOI: 10.1016/j.spmi.2017.07.008


Reference: YSPMI 5118

To appear in: Superlattices and Microstructures

Received Date: 11 May 2017
Revised Date: 2 July 2017
Accepted Date: 2 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Donor Binding Energies in a $GaN/ZnGeN_2$ quantum well

Hasan Yıldırım^{a,*}

^aDepartment of Occupational Health and Safety, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey

Abstract

Binding energies of a donor atom within a GaN/ZnGeN₂ quantum well structure have been investigated. Hydrogenic type wave functions are assumed and the Schrödinger and Poisson's equations are solved self-consistently. The binding energies of the donor states 1s and $2p_{\pm}$ associated with the first subband in the quantum well and the transition energies between them are represented as a function of the quantum well width, the donor position and the external magnetic field. The ground state 1s and the excited states $2p_{\pm}$ have maximum binding energies as much as 64 and 11 meV, occurring in quantum wells of widths 10 and 18 Å, respectively. The binding energies are found to be an asymmetric function of the donor position with respect to the quantum well center because of the asymmetry in the band profile introduced by the built-in electric field in the structure. An external magnetic field up to 10 T is included into the calculations and it is seen that the excited states show a small Zeeman splitting, very close to the bulk GaN value, because of the heavy effective mass of electron.

Keywords: ZnGeN₂, donor, binding energy, quantum well

2010 MSC: 00-01, 99-00

 ${\it Email address:} \ {\tt hasanyildirim@karabuk.edu.tr} \ (\ {\it Hasan Yıldırım} \)$

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/7939945

Download Persian Version:

https://daneshyari.com/article/7939945

Daneshyari.com