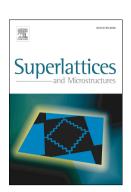
Accepted Manuscript

Low dimensional mixed-spin Ising model with next-nearest neighbor interaction

Aycan Özkan, Bülent Kutlu


PII: S0749-6036(17)31391-5

DOI: 10.1016/j.spmi.2017.07.029

Reference: YSPMI 5139

To appear in: Superlattices and Microstructures

Received Date: 9 June 2017 Revised Date: 10 July 2017 Accepted Date: 10 July 2017

Please cite this article as: A. Özkan, Bü. Kutlu, Low dimensional mixed-spin Ising model with next-nearest neighbor interaction, *Superlattices and Microstructures* (2017), doi: 10.1016/j.spmi.2017.07.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Low dimensional mixed-spin Ising model with next-nearest neighbor interaction

Aycan Özkan* and Bülent Kutlu**
Gazi Üniversitesi, Fen Fakültesi, Fizik Bölümü,
06500 Teknikokullar, Ankara, Turkey.
e-mail: *aycan@gazi.edu.tr
e-mail: **bkutlu@gazi.edu.tr

Abstract

In this study, the effects of next-nearest neighbor interaction on a one-dimensional mixed spin 3 - spin 3/2 system was investigated using Cellular Automaton (CA). The Ising model hamiltonian contains the antiferromagnetic nearest neighbor interaction (J₁), the ferromagnetic next- nearest neighbor interaction (J₂) and the external magnetic field (h=H/J₁). Magnetization (M) of the mixed spin system was obtained in the interval $0 \le R \le 1$ of the interaction ratio (R=J₂/J₁) using field cooling (FC) and zero-field cooling (ZFC) processes. Hysteresis curves were drawn for several R values in the interval -0.1 \le h \le 0.1 using FC results. The functional behavior for coercive field (H_C) was determined depending on R. Thus, the mixed spin system became a hard magnetic material and the lattice geometry also changed from one dimensional linear chain to triangular chain with increasing R value.

Keywords: Hysteresis, Coercive field, Ising model, cellular automaton. PACS Numbers: 05.20.-y, 75.10.Hk, 05.10.-a, 75.60.-d.

1. Introduction

Developments in material science have lead to technological innovations. Cyano-bridged magnetic molecules are one of these innovations. Cyano-bridged assemblies have properties such as high relaxation barrier, change of interlayer superexchange interactions, humidity sensitivity, photoinduced metal-to-metal charge transfer and high coordination number of metal centers due to inclusion of ions with high anisotropy. Thus, the cyano-bridged assemblies gain various functionalities such as slow magnetic relaxation [1,2], cooling-rate dependent magnetism [3], humidity-induced magnetization [4], photo-induced magnetization [5,6] and high temperature magnetization [7]. One of these cyano-bridged assemblies was synthesized by Guo et al. to obtain high temperature magnetism [8]. They studied cyano-bridged Tb (III) -Cr (III) bimetallic assembly

Download English Version:

https://daneshyari.com/en/article/7940021

Download Persian Version:

https://daneshyari.com/article/7940021

Daneshyari.com