

Journal of Materials Processing Technology 190 (2007) 123-129

www.elsevier.com/locate/jmatprotec

Journal of Materials Processing Technology

Prediction of hardness for sintered HSS components using response surface method

D. Chatterjee^a, B. Oraon^b, G. Sutradhar^{b,*}, P.K. Bose^b

^a Department of Mechanical Engineering, Kalyani Government Engineering College, Kalyani, West Bengal, India ^b Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, West Bengal, India

Received 21 July 2006; received in revised form 13 February 2007; accepted 4 March 2007

Abstract

Sintered high speed steel (HSS) components have been formed using powder metallurgy (PM) process. Water-atomized and vacuum—annealed powders of T-15 grade HSS along with other ingredients like Zn-stearate (2%) and alumina (Al₂O₃) were used to produce the components. The percentage of alumina, sintering temperature and sintering time were considered as the controllable process parameters while the hardness of the sintered components was considered as the response variable. A 2^3 full factorial design of experiments (DOE) was used to collect experimental data to statistically analyze the effect of process parameters on the hardness of sintered HSS components. It has been observed that the percentage of alumina, sintering temperature and also their interaction affects the hardness very significantly while duration of sintering temperature does not affects the hardness significantly. A second order response surface model (RSM) has been used to develop a predicting equation of hardness based on the data collected by a statistical design of experiments known as central composite design (CCD). The analysis of variance (ANOVA) shows that the observed data fits well into the assumed second order RSM model.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Sintered components; Response surface; Central composite design; t-Test; F-Test

1. Introduction

Powder metallurgy (PM) HSS bar is well-established in Europe, USA and Japan as the main root of production of gear hubs, end mills, cold pressing dies and other high pressing tools. Titanium nitride and Titanium carbide coating processes have significantly increased tool life in many applications, while this has brought significant savings to the final customers. In the 1970s and early 1980s, massive rationalization took place world wide in the High Speed Steel Industries [1-8]. Tool users became more cost conscious and premature tool failures were no longer tolerated. It was realized several years before by the PM HSS components makers that with advances in conventional machining processes and the reduction in prices of conventional bar, component would only sell which had sufficient dimensional accuracy to avoid machining and which were totally repeatable in metallurgical quality. As a result the trend on PM HSS followed that of hard metals away from the large complex shaped

* Corresponding author. *E-mail address:* goutam_sutradhar@rediffmail.com (G. Sutradhar).

0924-0136/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jmatprotec.2007.03.069

components towards the index able inserts. It has been reported that 1-3% alumina addition during compaction enhances the tool life of the PM HSS cutting tool inserts.

In this study, an attempt has been made to develop a PM HSS cutting tool material with high hardness by improving the micro-structure as well as superior homogeneity with uniformly distributed carbides with uniform and finer grain size which results the PM HSS comparable with other hard metals like carbides in all respect [9–12]. Design of experiments (DOE) have been used to perform statistical analysis about the effect of various process parameters on the hardness of sintered HSS components and response surface method has been used to develop a predicting response surface equation for hardness of sintered HSS component.

2. Experimental procedures

The HSS powder of T-15 grade was supplied by M/S Hoganas Limited (Great Britain) and the chemical analysis was carried out by Powdrex in Great Britain. Leco Analyser and Hilger Polyvac were used for performing the analysis. The result of chemical analysis of T-15 grade HSS powder has been given in Table 1 (all data are in percentage of weight except where stated).

1

Nomenclature

\mathbf{B}_1	$[\hat{eta}_0$	\hat{eta}_1	$\hat{\beta}_2$	$\hat{\beta}_3$	$\hat{\beta}_{12}$	$\hat{\beta}_{13}$	$\hat{\beta}_{23}$	$\hat{\beta}_{123}$	Т	
B ₂	[Âo	$\hat{\beta}_1$	βz	β3	\hat{B}_{11}	βzz	Â33	$\hat{\beta}_{12}$	$\hat{\beta}_{13}$	B23
$\tilde{E(x)}$	math	emat	ical e	xpec	tation	of the	varia	ble x	F 15	1 23
Festimate	d esti	mate	d val	ue of	Fishe	r's <i>F</i> -1	ratio			
$F_{\alpha_{\rm s},\nu_1,\nu_2}$	Fish	er's <i>F</i>	-rati	o for	v_1 upp	ber and	$1 v_2 \log v_2$	wer de	grees	
и	of treedom for α_s level of significance									
H TI	Hardness of sintered components									
п ū	Aver	ige v	alue	of ho	rdnoor	s for it	h min	numh		
Π_i $\overline{\mu}$.	Aver	ige v	alue	of ho	rdnos	s for a	antrol	nointe	51	
$\bar{\bar{H}}$	Average of averages of hardness values for central									
110	point	s	I uvei	uges	orma	uness	varue	510100	muui	
k	numb	ber of	con	rolla	ble pr	ocess	param	neters		
l	numb	ber of	leve	ls foi	each	proce	ss par	ameter		
т	numt	ber of	f coef	ficie	nts in	the reg	gressio	on equ	ation	
na	numb	ber of	faxia	l poi	nts = 2	lk Š		1		
n _c	numt	ber of	f cent	ral p	oints					
$n_{\rm f}$	numb	ber of	f poir	its us	ed in	factori	ial pos	sitions	$=2^{k}$	
N	total	numl	ber of	f desi	gn po	ints =	$n_{\rm f} + n_{\rm a}$	$n + n_c$		
testimated	estin	nated	t val	ue						
$t_{\alpha_{s,\nu}}$	value	of S	Stude	ents t	distr	ibutio	n for	$\alpha_{\rm s}$ lev	el of	
T 7	signi	fican	ce an	d v d	egrees	s of fre	eedom	1		
X	a mat	rix f	orme	d by	colun	in vec	tor \mathbf{x}_0	$, x_1, x_2$	2, X 3,	
νT	, e	tc.	. 6.41		·v					
X	trans	pose	of th	e mai	TIX X					
x_i	colou	i van	ue or	nn p	mmy	voriol		colur	on of	
A ()	1's	iiii ve		or ut	mmy	variat	JIC 1.C.	. colui		
Xi	colou	ım ve	ctor	of co	ded va	lues fo	or prod	cess pa	ram-	
	eter x	ī						1		
\mathbf{x}_{ij}	[scala	ar pro	oduct	of co	olumn	vecto	rs x _i a	and \mathbf{x}_j]		
\mathbf{x}_{ijk}	[scala	ar pro	oduct	of co	olumn	vecto	rs \mathbf{x}_i ,	\mathbf{x}_j and	\mathbf{x}_k]	
z_i	actua	l valu	ue of	<i>i</i> th p	rocess	s parar	neter			
z_i^{\max}	maxi	mum	actu	al va	lue of	the <i>i</i> t	h proc	ess pa	ram-	
min	eter									
z_i^{mm}	minii	num	actua	al val	ue of	the <i>i</i> th	proce	ess par	ame-	
_0	ter		nt of	tha d	acian	or the	hasia	laval	ftha	
z_i	<i>ith</i> pr	e por	ni oi s nar	ule u amete	esigii	of the	Dasic	lever	n the	
Λ_{7}	unit o	or inf	erval	of v	ariatic	on on f	he 7:	axis fo	or the	
	ith process parameter									
	··· I		I.							
Greek le	etters									
α	dista	nce fi	rom t	the co	entre j	point o	of the	design	n to a	
	star p	oint	(star	arm)						
β_0	free t	erm (of the	e regr	ression	i equa	tion			
β_i	regre	ssion		fficie	nt of	<i>i</i> th p	rocess	parar	neter	
0	(linea	ir ter	ms)	c .:	f	16:				
β_{ii}	regre	ssion	coer	ncier	ll OI Se denotio	torma	ractio	n of <i>i</i> tr	i pro-	
ß.,	rearc	paran	neter	(qua fficier	uialle	wrms intered) ption 1	atwaa	n <i>i</i> th	
ρ_{ij}	and it	ssioli th pro		nara	meter	s (into	ractio	n term	n (ui s)	
Ber	reore	ssion	LCOP	para ficier	nt of ir	iteract	ion an	n will nong it	h ith	
гчук	and k	th pr	ocess	s par	meter	S	.on un		, jui	
		P1		rait						

	$\hat{oldsymbol{eta}}_0$	estimated value of β_0
	\hat{eta}_i	estimated value of β_i
•	\hat{eta}_{ij}	estimated value of β_{ij}
	$\hat{\beta}_{ii}$	estimated value of β_{ii}
	\hat{eta}_{ijk}	estimated value of β_{ijk}
	ε	an error component
	$\sigma_{\rm e}^2$	estimate of error (replication variance)
	$\sigma_{\rm res}^2$	residual variance
	σ_{β}^2	variance of regression coefficients

Table 1

Chemical Analysis of T-15 gi	rade HSS	powde
------------------------------	----------	-------

С	Co	Cr	V	W	Si	Р	Mn	Mo	S	O (ppm)
1.605	5.03	3.92	4.82	12.02	0.36	0.01	0.23	0.8	0.018	733

Powder properties

Apparent density (gm/cm ³)	2.24
Flow (s/50 gm)	39.72
Compressibility (gm/cm ³)	5.96
Green strength (psi)	3059

Sieve distribution

Sieve number	Size (µm)	Cumulative (wt%)
+60#	>250	0.00
+85#	>180	0.00
+100#	>150	0.01
+150#	>106	9.29
+200#	>75	28.55
+350#	>45	62.15

The powder was compacted in a closed square die (as the shape of the square inserts) using 150 tonnes capacity hydraulic press. The die wall was lubricated with zinc stearate and the compacts were prepared according to a planned statistical design of experiments and the relative density of sintered performs were measured by hydrostatic process and the surface of the specimens was then polished with a fine emery paper. Hardness was determined by Rockwell Hardness tester using Scale B.

3. Effect of process parameters on hardness

In order to perform test of significance for individual process parameters as well as their interactions, an equation that can be considered is given by the following expression [14]:

$$\bar{H} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \varepsilon,$$
(1)

and the corresponding fitted equation can be expressed as follows:

$$\hat{H} = E(\bar{H} - \varepsilon)
= \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_{12} x_1 x_2
+ \hat{\beta}_{13} x_1 x_3 + \hat{\beta}_{23} x_2 x_3 + \hat{\beta}_{123} x_1 x_2 x_3.$$
(2)

where E(x) is the mathematical expectation of the variable *x*.

Download English Version:

https://daneshyari.com/en/article/794040

Download Persian Version:

https://daneshyari.com/article/794040

Daneshyari.com