Accepted Manuscript

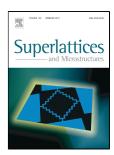
Electric-field tunable electronic structure in WSe₂/arsenene van der Waals heterostructure

Wei Li, Fang Zhang, Xianqi Dai

PII: S0749-6036(16)31668-8

DOI: 10.1016/j.spmi.2017.02.045

Reference: YSPMI 4857


To appear in: Superlattices and Microstructures

Received Date: 04 December 2016

Accepted Date: 24 February 2017

Please cite this article as: Wei Li, Fang Zhang, Xianqi Dai, Electric-field tunable electronic structure in WSe₂/arsenene van der Waals heterostructure, *Superlattices and Microstructures* (2017), doi: 10.1016/j.spmi.2017.02.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- · It is demonstrated that the WSe₂/arsenene heterobilayer is a type-II vdW heterostructure, and thus electrons and holes are spatially separated.
- The WSe₂/arsenene heterobilayer undergoes a transition from semiconductor to metal when subjected to an external electric field.
- The positive and negative external electric field have different effects on the band gap due to the spontaneous electric polarization in $WSe_2/arsenene$ heterostructure.
- The WSe₂/arsenene vdW heterostructure experiences transitions from type-II to type-I and then from type-I to type-II under various external electric fields.

.

Download English Version:

https://daneshyari.com/en/article/7940884

Download Persian Version:

https://daneshyari.com/article/7940884

Daneshyari.com