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1. Introduction

Since successful isolation of a single layer of graphite [1], graphene, as the first real two-dimensional lattice structure
which shows novel appealing properties [2,3], many researchers try to synthesis or isolate new two-dimensional materials.
These efforts result in finding other two dimensional materials such as BN [4], transition metal dichalcogenides (TMDs) [5]
and recently a monolayer of silicon, known as silicene [6—9].

Silicene is a monolayer of silicon atoms arranged in a honeycomb lattice structure as similar as graphene. While, as in
graphene, its low-energy dynamics near the two valleys at the corner of the hexagonal Brillouin zone is described by the Dirac
theory, its Dirac electrons, due to a large spin-orbit (SO) interaction, are massive with a energy gap as 1.55 meV [10,11].
Furthermore, due to the large ionic radius, silicene is buckled [10] such that the A and B sublattices of honeycomb lattice
shifted vertically with respect to each other and sit in two parallel planes with a separation of 0.46 nm [11,12]. The buckled
structure of silicene allows to tune its band gap via an electric filed applied perpendicular to its layer. These features donate
many attractive properties to silicene [11,13—20].

The SO interaction in silicene is strong, so it is a suitable candidate to study the spin-based effects. Due to this fact, recently
silicene has been the subject of strong interest [21—25]. In addition to the spin degree of freedom which is the footstone of the
spintronics, the valley degree of freedom in silicene, as in graphene [26—28] and MoS; [29,31—33], can be manipulated and
hired in a new technology known as valleytronics. One can populate states preferentially in one valley to achieve valley
polarization. One way is to use circular polarized light which was discussed theoretically [29]. Moreover as shown by Ezawa
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[30], one can use an off-resonance coherent laser beam to transform silicene from a quantum spin Hall effect or a band
insulating into new quantum phases such as photo-induced spin-polarized quantum, spin polarized metal and spin valley-
polarized metal, allowing to attain a spin or valley polarized current in silicene. Another way is to apply a vertical external
magnetic filed to silicene sheet, so Landau levels form in the electronic density of states. Then, if an excitonic gap via an
external vertical voltage included, n = 0 Landau level splits into distinct valley- and spin-polarized levels [19]. This is in
contrast to that occurs in graphene, in which n = 0 Landau level only splits between two distinct valley-polarized spin
degenerated energy levels [34—37]. In other way, as in graphene [38,39], the spin/valley polarized current is obtained in
silicene [40] junctions by deposing a ferromagnet on the top of its surface. These features make silicene a promising candidate
for spin- and valleytronic technology.

In this paper, we consider DC valley/spin Hall conductivity in a ferromagnetic silicene (a silicene sheet with ferromagnet
deposed on the top of its surface). We obtain a general relation for its transverse Hall conductivity which can be use to
calculate spin/valley Hall conductivity and to discuss possible phase transitions. Furthermore, we obtain the conditions
necessary to realize fully valley/spin polarized transport, which depends on the doping, exchange magnetization and the
applied perpendicular electric field. The paper is organized as follows. Section 2 is devoted to introduce the Hamiltonian
model and obtain the general relation for the transverse Hall conductivity. In Section 3 we present our results and discussion.
Finally in Section 4 we end this paper by summary and conclusions.

2. Model Hamiltonian

The low-energy dynamic in a ferromagnetic silicene, subjected to a uniform electric field applied perpendicular to sili-
cene's plane, is given by [10,40].

H,s, = hvp (kxTx - nkyTy) — NSz8s07z + Az7z — S:M, (M

which acts in the sublattice pseudospin space with a wavefunction as ¥"5: = {1//2’5“, Y }T: The first part of the Hamiltonian is
the Dirac hamiltonian describing the low-energy excitations around Dirac points (K and K denoted by 1 index) at the corners
of the hexagonal first Brillouin zone. This term arises from nearest neighbor energy transfer. ve= is the Fermi velocity of
silicene, 7; (i = x,y,z) are the Pauli matrixes and k = (ky,ky) is the two dimensional momentum measured from Dirac points. The
second term is the Kane-Mele term for the intrinsic spin-orbit coupling, where A, = 3.9 meV [10] denotes to the spin-orbit
coupling and s, index referred to two spin degrees of freedom, up (s, = +) and down (s, = —). The third term is the on-site
potential difference between A and B sublattice, arising from the buckled structure of silicene when a perpendicular electric
field is applied with A, = E,d where E, is the electric field and the 2d = 0.46 nm is the vertical separation of two different
sublattice's plane. The last term is the exchange magnetization where M is the exchange field. The exchange field my be due to
proximity effect arising from a magnetic adatom deposed on the surface of the silicene [41] or from a magnetic insulator
substrate like EuO as proposed for graphene [38].
We obtain the energy spectrum, by diagonalizing the Hamiltonian matrix given in Eq. (1), as

e =v Ag;.sz + (hwpk)® — ;M. (2)

where v = +(v=-) denotes the conduction (valance) bands, A,s, = 75;A5 — Az and k = \/k,z( +k§. The corresponding
wavefunctions are given by
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mse T (hl/[:k)z and ¢y = tan—1(ky, /ky). Fig. 1 shows the energy spectrum of silicene (Fig. 1(a)) and ferro-
magnetic silicene with M = A, /2 for three different values of the electric field, A, = 0 plotted in Fig. 1(b), A=A, in Fig. 1(c)
and A; = 2A,, in Fig. 1(d). These figures shows the energy spectrum around K. The energy spectrum around K for zero
electrical potential, A, = 0, is equal to that of K point. To obtain the other energy-spectrum plots it is enough to reflect the
energy-band plots with respect to E = 0 and exchange spin up and down.

DC transverse Hall conductivity, oxy, written in the Kubo formalism, is given by [42,43].
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where A is the area of the sample and velocity components can be obtained from the Hamiltonian and using relation
vy, =+ 8. Furthermore f(e%) = 1/(1 + e ~#) is Fermi-Dirac distribution function with u being the chemical potential
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