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a b s t r a c t

A finite difference method (FDM) applicable to a two dimensional
(2D) quantum dot was developed as a non-conventional approach
to the theoretical understandings of quantum devices. This method
can be applied to a realistic potential with an arbitrary shape.
Using this method, the Hamiltonian in a tri-diagonal matrix could
be obtained from any 2D potential, and the Hamiltonian could be
diagonalized numerically for the eigenvalues. The legitimacy of
this method was first checked by comparing the results with a
finite round well with the analytic solutions. Two truncated har-
monic wells were examined as a realistic model potential for lat-
eral double quantum dots (DQDs) and for triple quantum dots
(TQDs). The successful applications of the 2D FDM were observed
with the entanglements in the DQDs. The level-splitting and anti-
crossing behaviors of the DQDs could be obtained by varying the
distance between the dots and by introducing asymmetry in the
well-depths. The 2D FDM results for linear/triangular TQDs were
compared with the tight binding approximations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The recent developments in quantum phenomena in mesoscopic systems predict many future
applications of quantum devices, such as quantum information, quantum computing, next-generation
logic. A quantum dot with a submicron feature-size is considered as an artificial atom with a unique
shell structure [1] that can be engineered artificially by manipulating a highly-mobile two-dimen-
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sional electron gas (2DEG) formed at the interface of a semiconductor heterostructure (GaAs/AlGaAs).
The lateral confinement of a 2DEG is accomplished by shaping the local potential wells using gate
electrodes. When two quantum dots are moved close enough to each other, they are considered as
an artificial molecule that might be a candidate for a solid state quantum bit in a quantum computa-
tion [2–4].

The theoretical understanding on the quantized bound states and the transport properties of QDs is
based on the methods of quantum mechanics developed to date, such as perturbation theory with the
tight-binding Anderson model [5–7], variational calculations [8–10], the k�p Hamiltonian method
within the envelope-function approximation [11–13], density-functional theory [14], mode space ap-
proach [15], filter-diagonalization method [16], transmitting boundary method [17,18], numerical
coupled-channel method [19], and direct diagonalization techniques in finite difference scheme
[20–23].

Regarding the realistic potentials, theoretical modeling has a weakness. For example, the experi-
mental data [24] revealed the breaking of Kohn’s theorem [25]. In particular, when it comes to clo-
sely-coupled shallow QDs, it is more challenging to employ the ideal parabolic confining potential
rigorously to describe each QD: a harmonic potential requires an infinite range and height. Most the-
oretical methods assume an ideal and symmetric model potential and often recur to the expansions or
approximations using the analytic basis functions [26,27]. Numerical methods are feasible alternatives
and the finite difference method (FDM) can be one of the most powerful techniques for solving real
quantum systems being considered recently [28–39]. This paper reports the capability of 2D FDM
by examining double QDs (DQDs) and triple QDs (TQDs) with a model potential composed of trun-
cated parabolic potential wells. This study first reviewed the 2D FDM with a single QD with round
well, and examined the level-splittings and anti-crossing behaviors of DQDs. The 2D FDM and the tight
binding approach are compared quantitatively in the linear TQDs and in the triangular TQDs.

2. Theoretical model and validation

2.1. The FDM in 2D

In the effective-mass approximation for a arbitrary N-electron quantum dot, the single-particle
Schrödinger equation can be given as
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where m�ð~rÞ is the electron effective mass, Vee is the electrostatic potential between electrons, Vb is the
confining barrier potential, and Exc is the exchange-correlation energy. Eq. (1) can be solved self-con-
sistently by solving the Poisson eq. for Vee and by applying the Hartree or the local density approxi-
mation for Exc [40]. When a single electron is trapped within a quantum dot with a diameter of
several tens of nanometers, the carrier density is very low, �1012–1013/cm2, and the contributions
from the Vee and Exc can be neglected.

By applying a FDM to 2D regularly-spaced grid points with a grid-spacing, D, Eq. (1) can be approx-
imated with a set of coupled finite difference equations,

c 4wj;k � wjþ1;k � wj;kþ1 � wj�1;k � wj;k�1
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where c ¼ �h2
=2m�D2;wj;k ¼ wðxj; ykÞ, and Vb

j;k ¼ Vbðxj; ykÞ. By aligning the grid points with indices, j and k
(=1, . . ., N), into an one-dimensional sequence with an index i � ðj� 1ÞN þ k (=1, . . ., N2) [41], a large but
sparse Hamiltonian matrix, H, with non-zero elements Hi;i ¼ 4c� eVb

i and HiþN;i ¼ Hi;iþN

¼ Hiþ1;i ¼ Hi;iþ1 ¼ �c can be obtained. In addition, the homogeneous domain is assumed to be sur-
rounded by an impenetrable barrier, such that wavefunction vanishes outside, and
HnNþ1;nN ¼ HnN;nNþ1 ¼ 0 for integer n. The Hamiltonian is a block tridiagonal matrix that can be diagonal-
ized iteratively with the Krylov subspace method [42] realized using MATLAB code. The effective mass,
m� ¼ 0:067me, was used for an electron in GaAs. A 300 � 300 nm2-area with a spatial-resolution
D ¼ 1 nm required � 9� 104 grid-points.
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