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Abstract

The prime objective of the paper is the application of the fully automatic 4p adaptive Finite Element Method (FEM) code to solve heat transfer
problems over the domain with various materials. Large changes in material data generate singularities: non-continuities or large gradients of the
solution to the heat equation. To minimize the error of FEM solution the mesh should be refined close to the singularities by sub-dividing elements
and increasing the polynomial order of approximation. It is very difficult to design an optimal 4p mesh by hand. This paper presents a typical
application of the fully automatic 3D hp adaptive FE code to the problem of modelling of the resistance heating of an Al-Si billet in a steel die
for thixoforming process. The code automatically produces an FE mesh with minimal number of degrees of freedom, resolving all singularities

within a prescribed error tolerance.
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1. Introduction

In the modelling of the heat transfer problem, the object
under consideration may consist of various materials charac-
terised by various properties. The singularities of the solution
occur at interfaces between different materials. Large error of
the numerical solution is observed in those areas. For elliptic
problems, the error propagates into the entire domain. To mini-
mize the error of the solution, the finite element (FE) mesh must
be refined. There are five main mesh adaptive strategies [1]:

e Uniform & refinement, where all finite elements are broken
into 4 sons in 2D and 8 sons in 3D.

e Uniform p refinement, where the polynomial order of approx-
imation is uniformly raised over the entire mesh.

e h adaptivity, where only some finite elements are broken, into
2 or 4 sons in 2D, or 2, 4 or 8 sons in 3D, over the mesh areas
with large error estimations.

e p adaptivity, where the polynomial order of approximation is
increased only on some edges, faces and interiors in 3D, over
the mesh areas with large error estimations.
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e hp adaptivity, where only some finite elements are broken and
the polynomial order of approximation p is increased only in
areas with large error estimations. This is p adaptivity with &
adaptivity added.

The hp adaptive strategy is the fastest mesh refinements strat-
egy delivering exponential convergence of the numerical error
with respect to the number of degrees of freedom used [1]. Gen-
eral environments to support local mesh refinements have been
developed [2—4]. The objective of this paper is presentation of
capabilities of the fully automatic hp adaptive code described in
Refs. [5-8] as far as improvement of the accuracy and decrease
of the computational costs are considered. Problem of modelling
of the resistance heating of Al-Si billetin steel die (Fig. 1), which
is used for thixoforming processes, was selected. The particu-
lar goal of the paper is to show how the application of the hp
adaptivity can reduce size of the FE mesh required to solve the
problem with prescribed accuracy.

2. Problem formulation

Model used in this paper is based on the resistance heating
of Al-Si billet in steel die for thixoforming process, presented
in Ref. [9]. The orthotropic heat equation
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Fig. 1. Geometry and boundary conditions.
Table 1
Material properties
Material (a) Heat generation (b) Thermal (c) Boundary
0 (W/m3) conductivity convection
k (W/mK) H (W/m?K)
Al-Si 2000 160 1000
Steel 100000 45 800
Al-Si interface 2000 8 -
Steel-steel interface 100000 5 -

is solved over the domain presented in Fig. 1. Here k denotes the
matrix of thermal conductivity coefficients, T is the temperature
and Q is the heat generated in a volume as a result of electrical
current. The generated heat is balanced with heat convection on
model boundaries. This is the simplified approach assuming that
the heat is constant over each part of the domain, see Table 1
column (a). There are three parts of the assembly: Al-Si bil-
let, steel die and steel stamp. Interfaces between these parts are
introduced as “artificial materials”. The thermal conductivity k
coefficients are presented in Table 1 column (b). The Fourier
boundary condition of the third type
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is defined on the domain boundary, except the bottom of the
domain, where the free boundary condition is assumed. Here H
is a boundary convection coefficient presented in Fig. 1 and in
Table 1 column (c), and Tepy is the ambient temperature.

3. Description of the fully automatic #p adaptive
algorithm

The automatic hp adaptive code starts from the initial mesh
presented in Fig. 2, called the coarse mesh. Various degrees of
grey denote various orders of polynomial approximation. The
code performs global hp refinement of the coarse mesh, and
the fine mesh, presented in Fig. 2, is obtained by breaking each
finite element from the coarse mesh into 8 sons and increasing
the polynomial order of approximation by one. The code solves
the problem twice, on the coarse mesh and on the fine mesh.
The relative error estimation for the coarse mesh solution is
calculated:
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where uy,, is the FE solution on the coarse mesh, up 41 the
FE solution on the fine mesh and || || is the norm in the H'
Sobolev space (the energy norm). Then, for each finite element
from the coarse mesh the code considers all possible refinement
strategies. For each possible refinement of each coarse mesh
element, the corresponding local solution is obtained by com-
puting projection from the fine mesh solution [5]. Then, the
relative error estimation over the coarse mesh element is cal-
culated for each refinement possibility, and the code selects the
optimal refinement, giving maximum rate of the error decrease,
defined as the ratio of the relative error estimation to the num-
ber of the added degrees of freedom. The optimal mesh after
the first iteration, presented in Fig. 2, becomes the coarse mesh
for the second iteration, and the entire process is repeated, as
it is presented in Fig. 3, as long as the relative error estimation
over the coarse mesh (3) is greater than the prescribed error
tolerance.

In order to be able to mix elements with various size and
polynomials with various orders of approximation over element
edges, faces and interiors, the following mesh regularity rules,
described in detail in Refs. [5-8], are introduced:
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Fig. 2. (a) Initial coarse mesh. (b) Fine mesh. (c) Optimal mesh after the first iteration. (d) Interior of the optimal mesh. Various degree of grey denotes various

polynomial orders of approximation p over elements edges and faces.
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