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Prediction of spring-back behavior in high strength low carbon steel sheets
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Abstract

The spring-back of polycrystalline materials has been predicted numerically using the elastic and visco-plastic crystal plasticity models. The
anisotropic plane strain moduli for texture components typical in high strength steel sheets and low carbon high strength steel sheets were calculated
with the upper–lower bounds and elastic self-consistent model. The yield stresses of polycrystalline materials were calculated with the visco-plastic
self-consistent polycrystal model. The influence of texture components on the spring-back was analyzed in detail. The elastic and visco-plastic
self-consistent models were also used to evaluate magnitude and directionality of the spring-back angle of high strength low carbon steel sheets
subjected to plane strain bending.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The application of high strength interstitial free (IF) or low
carbon steel sheets for automotive use requires the control of
spring-back because of their higher yield strength to elastic
modulus ratio. After the press forming operations, the form-
ing parts change their shapes to achieve the equilibrium with no
external force. Spring-back is thus an elastically driven process
that adjusts internal stresses to attain zero moment and force
at each sheet location[1]. It is known that the spring-back is
affected by several material parameters and process variables.
The prediction of spring-back for polycrystalline materials has
been conducted using the finite element methods[2–4]. For an
accurate simulation, it is required that the anisotropic behav-
iors of elastic and plastic properties of polycrystalline materials
should be considered in the constitutive equation. Most of these
studies has been used the isotropic elastic stiffness tensor and
simple yield function in the formulation. Geng and co-workers
[2,3] predicted spring-back behavior more accurately by intro-
ducing rigorous yield function and kinematic hardening law.
Polycrystalline material consists of many single crystals exhibit-
ing strong anisotropic elastic and plastic properties. Renavikar
et al. [5] investigated the effect of crystallographic orientation
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of single crystal steel on the spring-back behavior in plane strain
bending application. Chan and Wang[6] predicted the spring-
back behavior of polycrystalline leadframe materials by a plane
stress model taking into account crystallographic textures and
grain shape. However, they did not evaluate the effect of crys-
tallographic texture components on the spring-back behavior.

In the present work, first of all, the elastic stiffness tensors and
anisotropic plane strain elastic modulus for the crystallographic
texture components typical in high strength steel sheets were
evaluated by using the upper–lower bounds[7,8]and elastic self-
consistent method[9]. The visco-plastic self-consistent model
[10] was used to predict yield stress directionality for the crystal-
lographic texture components typical in the high strength steel
sheets. The effect of the crystallographic texture components on
the spring-back behavior was theoretically investigated for the
high strength steel sheets subjected to the plane strain bending.
Moreover, the spring-back behavior for low carbon high strength
steel sheets was measured and compared with predicted results.

2. Calculation procedure

For the sheet metals having very large width-to-thickness
ratio, bending of the sheet metals approaches a plane strain
operation. The phenomenon of spring-back in the plane strain
bending is schematically described inFig. 1. If we assume that
sheet metals exhibit elastically isotropic and an elastic–ideally
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Fig. 1. Schematic diagram of spring-back in plane strain bending.

plastic (i.e. non-strain hardening) behavior, the amount of rel-
ative spring-back of sheet metals having a thickness,t can be
calculated from the following equation[1]:
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wherero andrf are radii of curvature before and after spring-
back, respectively. Andσo andE′ are flow stress in plane strain
and plane strain elastic modulus at the length direction, respec-
tively. The isotropic plane strain elastic modulusE′ can be
calculated from the Young’s modulus,E and Poisson’s ratio,
ν.

If the sheet metals exhibit elastically anisotropic behavior and
isotropic strain hardening during plane strain bending, Eq.(1)
cannot be used to calculate the amount of relative spring-back of
sheet metals. From the generalized form of Hook’s law[11] and
boundary conditions and the Ludwik relation (σ ∼= σo + Kεn), the
amount of relative spring-back of sheet metals can be calculated
from the following equation:
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whereSθ
ijkl is the overall elastic compliance tensor expressed in

the sample coordinate,n the strain hardening exponent andK
is the strength coefficient. Andσo(θ) andE′(θ) are yield stress
in plane strain and anisotropic plane strain elastic modulus at
an angleθ from the rolling direction (RD), respectively. The
anisotropic plane strain elastic modulusE′(θ) can be calculated
from overall elastic compliance tensor,Sijkl expressed in the
sample coordinate as follows[9,12]:
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wherer is the rotation matrix that rotates around the normal
direction (ND) by an angleθ.

Assuming the stress neutral plane and strain neutral plane
are consistent, spring-back angle,B(θ) can be expressed as a
function of relative spring-back as follows[13]:

B(θ) = βo − βf = βoro
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whereβo andβf are bending angle before and after spring-back,
respectively.

For a given bending angle and radius of curvature before
spring-back, the spring-back angle is a function of anisotropic
plane strain elastic modulus and yield stress in plane strain, at
a specific direction from the RD. To minimize the spring-back
angle, a polycrystalline sheet exhibiting a low yield stress in
plane strain and a high plane strain elastic modulus at an angleθ

from the RD is preferable. To minimize the variation of spring-
back angle, a polycrystalline sheet exhibiting uniform elastic and
plastic properties in the plane of the sheet is preferable. To pre-
dict the elastic compliance tensor of polycrystalline aggregates,
the upper bound (Voigt average) and lower bound (Reuss aver-
age)[7,8] were used. The Voigt and Reuss averages of elastic
modulus provide upper and lower bounds on the elastic modulus
of polycrystal aggregates. The Voigt average assumes a uniform
strain throughout polycrystal and the Reuss average assumes a
uniform stress. The Voigt and Reuss polycrystal averages can be
expressed as follows:
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whereCi′j′k′l′ and Si′j′k′l′ are the elements of the elastic stiff-
ness and compliance tensors for the single crystal.gT represents
transpose of an orientation matrix and〈 〉 means the arithmetic
volume average over polycrystal aggregates. It should be noted
that the elastic tensors could also be represented as matrices[13].
This allows a corresponding compliance tensor to be calculated
for the Voigt stiffness tensor through matrix inversion. The elas-
tic self-consistent model[9] assumes that grains embedded in
a homogeneous equivalent medium (HEM) having the average
elastic properties of the aggregate. The embedding assumption
in the self-consistent procedure is that the response in the vicin-
ity of the grain is adequately described by the average modulus
of the HEM, independently of the actual neighborhood of the
grain. For spherical or ellipsoidal grains, stress and strain are
uniform within the domain of the grain, and they are linearly
related to the stress and strain at the boundary through the inter-
action equation as follows:

σ̃ = −CS : R : ε̃ (6)

R = (I − E) : E−1 (7)

whereε̃ = εc − ε, σ̃ = σc − σ defines the deviations in strain
and stress with respect to the average magnitudes.I is the fourth
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