Accepted Manuscript

Title: Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy

Authors: Chunbo Lan, Yu Wu, Lili Guo, Huijuan Chen, Feng

Chen

PII: S1005-0302(17)30124-X

DOI: http://dx.doi.org/doi:10.1016/j.jmst.2017.04.017

Reference: JMST 976

To appear in:

Received date: 4-12-2016 Revised date: 30-12-2016 Accepted date: 9-1-2017

Please cite this article as: Chunbo Lan, Yu Wu, Lili Guo, Huijuan Chen, Feng Chen, Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy (2010), http://dx.doi.org/10.1016/j.jmst.2017.04.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Microstructure, texture evolution and mechanical properties

of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium

alloy

Chunbo Lan, Yu Wu, Lili Guo, Huijuan Chen, Feng Chen*

Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing

211189, China

[Received 4 December 2016; received in revised form 30 December 2016; Accepted 9 January

2017]

* Corresponding author. Prof.; Tel.: +86 13813811605.

E-mail address: fengchen@seu.edu.cn (F. Chen).

Ti-32.5Nb-6.8Zr-2.7Sn (TNZS, wt%) alloy was produced by using vacuum arc melting

method, followed by solution treatment and cold rolling with the area reductions of 50%

and 90%. The effects of cold rolling on the microstructure, texture evolution and

mechanical properties of the experimental alloy were investigated by optical microscopy,

X-ray diffraction, transmission electron microscopy and universal material testing

machine. The results showed that the grains of the alloy were elongated along rolling

direction and stress-induced α " martensite was not detected in the deformed samples.

The plastic deformation mechanisms of the alloy were related to {112}(111) type

deformation twinning and dislocation slipping. Meanwhile, the transition from γ -fiber

texture to α -fiber texture took place during cold rolling and a dominant $\{001\}\langle 110\rangle_{\alpha\text{-fiber}}$

texture was obtained after 90% cold deformation. With the increase of cold deformation

degree, the strength increased owing to the increase of microstrain, dislocation density

and grain refinement, and the elastic modulus decreased owing to the increase of

dislocation density as well as an enhanced intensity of $\{001\}\langle 110\rangle_{\alpha\text{-fiber}}$ texture and a

1

Download English Version:

https://daneshyari.com/en/article/7951990

Download Persian Version:

https://daneshyari.com/article/7951990

<u>Daneshyari.com</u>