Accepted Manuscript

Title: Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB₂ addition at 1300 °C

Authors: Juan Wang, Bin Li, Shuai Ren, Rui Li, Tao Wang, Guojun Zhang

PII: S1005-0302(17)30224-4

DOI: http://dx.doi.org/10.1016/j.jmst.2017.09.010

Reference: JMST 1055

To appear in:

Received date: 6-7-2017 Revised date: 25-7-2017 Accepted date: 21-8-2017

Please cite this article as: Juan Wang, Bin Li, Shuai Ren, Rui Li, Tao Wang, Guojun Zhang, Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300°C (2010), http://dx.doi.org/10.1016/j.jmst.2017.09.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB $_2$ addition at 1300 $^{\circ}\text{C}$

Juan Wang ¹, Bin Li ², Shuai Ren ¹, Rui Li ¹, Tao Wang ¹, Guojun Zhang ^{1,*}

¹School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048. China

²Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China

*Corresponding author.

E-mail address: zhangguojun@xaut.edu.cn. (G.J. Zhang).

[Received 6 July 2017; Received in revised form 25 July 2017; Accepted 21 August 2017]

Abstract

Mo-12Si-8.5B and Mo-12Si-8.5B-1.0wt%ZrB₂ alloys were fabricated using mechanical alloying, followed by hot-pressing. Both alloys exhibited uniform microstructure, with the Mo₃Si and Mo₅SiB₂ phases distributing dispersedly in the α-Mo matrix. Mo-12Si-8.5B-1.0wt%ZrB₂ showed a finer-grained microstructure than Mo-12Si-8.5B alloy owing to the addition of ZrB₂. The results of isothermal oxidation tests at 1300 °C in air revealed that Mo-12Si-8.5B and Mo-12Si-8.5B-1.0wt%ZrB₂ alloys initially suffered a transient stage with high mass loss due to the volatilization of MoO₃, and then achieved a steady stage owing to the formation of a protective borosilicate scale on the alloy surface. Especially, the transient stage of Mo-12Si-8.5B-1.0wt%ZrB₂ alloy was shortened to be less than 300 s, and the mass loss of this stage was reduced by at least 88% compared with that of Mo-12Si-8.5B alloy, indicating a significant improvement in the oxidation resistance. The addition of ZrB₂ not only resulted in a continuous borosilicate scale quickly covering the entire base alloy during the transient stage, but also improved the protectiveness of the

Download English Version:

https://daneshyari.com/en/article/7952013

Download Persian Version:

https://daneshyari.com/article/7952013

<u>Daneshyari.com</u>