Accepted Manuscript

Title: Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti₂AlC particulates

Authors: Jun Cheng, Shengyu Zhu, Yuan Yu, Jun Yang,

Weimin Liu

PII: S1005-0302(17)30221-9

DOI: http://dx.doi.org/10.1016/j.jmst.2017.09.007

Reference: JMST 1052

To appear in:

Received date: 5-6-2017 Revised date: 24-7-2017 Accepted date: 23-8-2017

Please cite this article as: Jun Cheng, Shengyu Zhu, Yuan Yu, Jun Yang, Weimin Liu, Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates (2010), http://dx.doi.org/10.1016/j.jmst.2017.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Microstructure, mechanical and tribological properties of TiAl-based

composites reinforced with high volume fraction of nearly network

Ti₂AlC particulates

Jun Cheng, Shengyu Zhu, Yuan Yu, Jun Yang*, Weimin Liu

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese

Academy of Sciences, Lanzhou 730000, China

*Corresponding author. Prof., Ph.D.; Tel.: +86 931 4968193; Fax: +86 931 8277088.

E-mail addresses: jyang@lzb.ac.cn; jyang@licp.cas.cn (Jun Yang).

[Received 5 June 2017; Received in revised form 24 July 2017; Accepted 23 August 2017]

TiAl-based composites reinforced with different high volume fractions of nearly network

Ti₂AlC phase have been successfully prepared by mechanical alloying and hot-pressing

method. Their microstructure, mechanical and tribological properties have been

investigated. Ti₂AlC network becomes continuous but the network wall grows thicker

with increasing the Ti₂AlC content. The continuity and wall size of the network Ti₂AlC

phase exert a significant influence on the mechanical properties. The bending strength of

the composites first increases and then decreases with the Ti₂AlC content. The

compressive strength of the composite decreases slightly compared to the TiAl alloy, but

the hardness is enhanced. Due to the high hardness and load-carrying capacity of the

network structure, these composites have the better wear resistance. And this

enhancement is more notable at low applied loads and high Ti₂AlC content. The

mechanisms simulating the role of network Ti₂AlC phase on the wear behavior and the

wear process of TiAl/Ti₂AlC composites at different applied loads have been proposed.

Keywords: TiAl/Ti₂AlC composites; Network structure; Wear resistance

1

Download English Version:

https://daneshyari.com/en/article/7952019

Download Persian Version:

https://daneshyari.com/article/7952019

Daneshyari.com