
Author's Accepted Manuscript

Broadband Optoelectronic Synaptic Devices based on Silicon Nanocrystals for Neuromorphic Computing

Hua Tan, Zhenyi Ni, Wenbing Peng, Sichao Du, Xiangkai Liu, Shuangyi Zhao, Wei Li, Zhi Ye, Mingsheng Xu, Yang Xu, Xiaodong Pi, Deren Yang

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(18)30580-9

DOI: https://doi.org/10.1016/j.nanoen.2018.08.018

Reference: NANOEN2948

To appear in: Nano Energy

Received date: 23 June 2018 Revised date: 28 July 2018 Accepted date: 8 August 2018

Cite this article as: Hua Tan, Zhenyi Ni, Wenbing Peng, Sichao Du, Xiangkai Liu, Shuangyi Zhao, Wei Li, Zhi Ye, Mingsheng Xu, Yang Xu, Xiaodong Pi and Deren Yang, Broadband Optoelectronic Synaptic Devices based on Silicon Nanocrystals for Neuromorphic Computing, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.08.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Broadband Optoelectronic Synaptic Devices based on Silicon Nanocrystals for

Neuromorphic Computing

Hua Tan^{a1}, Zhenyi Ni^{a1}, Wenbing Peng^a, Sichao Du^b, Xiangkai Liu^a, Shuangyi Zhao^a, Wei Li^b, Zhi

Ye^b, Mingsheng Xu^b, Yang Xu^b, Xiaodong Pi^{a*}, & Deren Yang^{a*}

^aState Key Laboratory of Silicon Materials & School of Materials Science and Engineering,

Zhejiang University, Hangzhou, Zhejiang 310027, China

^bCollege of Information Science and Electronic Engineering, Zhejiang University, Hangzhou,

Zhejiang 310027, China

*Corresponding author. E-mail: xdpi@zju.edu.cn (X.P.); mseyang@zju.edu.cn (D.Y.)

ABSTRACT

Optically stimulated synaptic devices are critical to the development of neuromorphic computing

with broad bandwidth and efficient interconnect. Although a few interesting materials have been

employed to fabricate optically stimulated synaptic devices, the use of silicon (Si) that is the

material of choice for very large-scale integration circuits in the conventional von Neumann

computing has not been explored for optically stimulated synaptic devices. Here we take advantage

of one of the most important nanostructures of Si — Si nanocrystals (NCs) to make synaptic

devices, which can be effectively stimulated by light in the unprecedented broad spectral region

from the ultraviolet to near-infrared, approaching the wavelength of $\sim 2 \mu m$. These optically

¹ These authors contributed equally to this work.

Download English Version:

https://daneshyari.com/en/article/7952274

Download Persian Version:

https://daneshyari.com/article/7952274

<u>Daneshyari.com</u>