
Author's Accepted Manuscript

Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays

Zhao Li, Li Shi, Daniel Franklin, Supriya Koul, Akihiro Kushima, Yang Yang

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(18)30478-6

DOI: https://doi.org/10.1016/j.nanoen.2018.06.083

Reference: NANOEN2864

To appear in: Nano Energy

Received date: 7 May 2018 Revised date: 9 June 2018 Accepted date: 26 June 2018

Cite this article as: Zhao Li, Li Shi, Daniel Franklin, Supriya Koul, Akihiro Kushima and Yang Yang, Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO₂ heterostructured nanocavity arrays, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.06.083

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays

Zhao Li^{a1}, Li Shi^{b1}, Daniel Franklin^b, Supriya Koul^a, Akihiro Kushima^a, Yang Yang^{a,b*}

^aDepartment of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, United States

^bNanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States

*Corresponding author. Yang. Yang@ucf.edu

ABSTRACT

Herein, we presented nonprecious plasmonic Al@TiO₂ heterostructures for efficient photoelectrochemical (PEC) water splitting by controllably isolating Aluminum (Al) nanoparticles (NPs) individually into TiO₂ nanocavity arrays (NCAs). Compared with bare TiO₂, the Al@TiO₂ shows the most prominently enhanced PEC performance under solar light illumination. The significantly enhanced PEC activity of Al@TiO₂ photoanode is attributed to the localized surface plasmonic resonance (LSPR) induced electromagnetic field enhancement in

¹ These authors contributed equally to this work.

1

Download English Version:

https://daneshyari.com/en/article/7952336

Download Persian Version:

https://daneshyari.com/article/7952336

<u>Daneshyari.com</u>