

Contents lists available at ScienceDirect

Nano Energy

journal homepage: www.elsevier.com/locate/nanoen

Communication

Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells

Xinxing Yin^a, Changlei Wang^b, Dewei Zhao^b, Niraj Shrestha^b, Corey R. Grice^b, Lei Guan^b, Zhaoning Song^b, Cong Chen^b, Chongwen Li^b, Guoli Chi^{a,b}, Baojing Zhou^{a,b}, Jiangsheng Yu^a, Zhuohan Zhang^a, Randy J. Ellingson^b, Jie Zhou^{a,*}, Yanfa Yan^{b,*}, Weihua Tang^{a,*}

ARTICLE INFO

Keywords:
Hole transport material
HOMO level
Blending
CZ-STA
Perovskite solar cell

ABSTRACT

To maximize the photovoltaic performance of perovskite solar cells (PVSCs) by developing new hole-transport layer (HTL) materials, the precise tuning of their energy levels especially the highest occupied molecular orbital (HOMO) is highly desirable. Here, a simple binary strategy for the first time is proposed to acquire ideal HOMO level by optimizing the composition of binary blend HTLs including CZ-TA (HOMO = $-5.170\,\mathrm{eV}$) and CZ-STA (HOMO = $-5.333\,\mathrm{eV}$). By adding $10\,\mathrm{wt}\%$ CZ-STA, the binary HTM (HOMO = $-5.190\,\mathrm{eV}$) based perovskite solar cells achieve a maximum power conversion efficiency of 19.85% (18.32% for CZ-TA). The introducing of S atom in CZ-STA not only downshifts HOMO level but also forms stronger Pb-S interaction with perovskites than Pb-O in CZ-TA, leading to better device performance and reduced hysteresis. Importantly, the un-encapsulated PVSCs using CZ-TA:CZ-STA (90:10, w/w) binary HTL exhibit good environment stability in ambient air, maintaining over 82% of their initial efficiency after $60\,\mathrm{days}$ 3 storage with a relative humidity around 50%6. Therefore, this strategy provides new insights on HTL development to push forward the progress of the emerging PVSCs

1. Introduction

In the past few years, organic-inorganic hybrid perovskite solar cells (PVSCs) have witnessed a rapid development due to their facile solution fabrication, strong light absorption over a broad spectrum, long carrier lifetime and diffusion length [1–5]. The certified power conversion efficiency (PCE) has reached 22.7% from the initial 3.8% [6–10]. In a typical PVSC device, electron transport layers (ETLs, *n*-type semiconductors) and hole transport layers (HTLs, *p*-type semiconductors) are usually required to assist charge separation and transport [11–14]. State-of-the-art high-performance PVSCs commonly use organic materials especially 2,2′,7,7′-tetrakis(*N*,*N*-di-*p*-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD) as HTL [15–18]. However, the complex multi-step synthesis and expensive sublimation process greatly limit its commercial application. Moreover, spiro-OMeTAD needs to be exposed to ambient environment for a long-time oxidation process to reach peak PCE. This is also a great drawback for industrial use.

Considering the disadvantages mentioned above, many efforts have been made by researchers all over the world to replace spiro-OMeTAD

[9,19-24]. Malinauskas et al. [21] developed an effective HTL material named V862 through two-step reaction and the PCE can reach 19.96% with a total cost of only 23.11 \$ g^{-1} (~ 500 \$ g^{-1} for spiro-OMeTAD). By simply replacing spiro core with fluorene-dithiophene. Saliba et al. [25] synthesized FDT and PVSCs with this HTL showed an impressive PCE of 20.2%. Meanwhile, the lab synthesis costs of FDT is only one fifth of spiro-OMeTAD. Hou et al. [9] adopted Ta-WOx modified PDCBT to reduce V_{OC} losses and acquired a PCE as high as 21.2%. Recently, we reported a simple carbazole-based HTL, CZ-TA, synthesized through a facile one-step reaction with improved hole transport and reduced cost (1/80 of spiro-OMeTAD) [26,27]. PVSCs using CZ-TA as HTL showed a PCE of 18.32% with an impressive fill factor (FF) over 81% and good device stability. Additionally, CZ-TA does not require oxygen doping, eliminating the potential drop of PCE upon device encapsulation. The main drawback of CZ-TA is the relatively low V_{OC} (1.044 V), indicating the mismatch of energy level [28]. It is well known that appropriate energy-level alignment can facilitate charge extraction and transport, leading to improved $V_{oc} J_{sc}$ and FF. However, in many cases, although careful theoretical simulation and calculation have been carried out

E-mail addresses: fnzhoujie@njust.edu.cn (J. Zhou), yanfa.yan@utoledo.edu (Y. Yan), whtang@njust.edu.cn (W. Tang).

^a Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education of China), Nanjing University of Science and Technology, Nanjing 210094, China Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, United States

^{*} Corresponding authors.

X. Yin et al. Nano Energy 51 (2018) 680–687

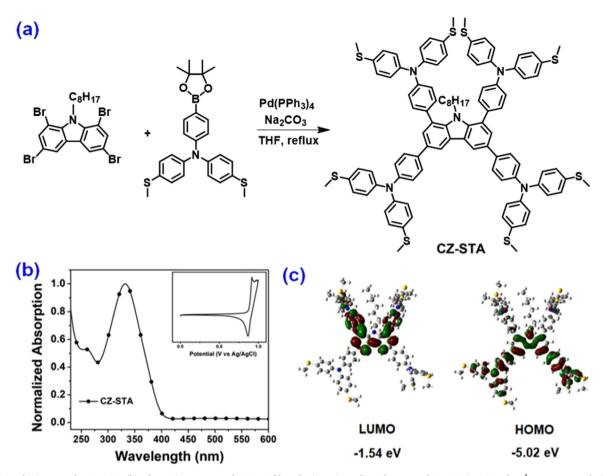


Fig. 1. (a) Synthetic route for CZ-STA. (b) Absorption spectra of CZ-STA film, the inset is cyclic voltagram of CZ-STA in $0.1 \text{ mol L}^{-1} \text{ } n\text{-Bu}_4\text{NPF}_6$ solution in acetonitrile. (c) DFT-calculated HOMO and LUMO electronic structures of CZ-STA.

during HTL molecular design, the actual highest occupied molecular orbital (HOMO) level of HTL may still not be at ideal position resulting in V_{oc} loss [19]. Thus, simple, precise and efficient tuning of HOMO level is necessary for maximizing device performance when developing new HTL materials.

Herein, we report a new strategy for linearly tuning HOMO level of HTL materials to obtain maximum device performance. With CZ-TA as an example, firstly, we have designed and synthesized 4,4',4",4"'-(9octylcarbazole-1,3,6,8-tetrayl)tetrakis(N,N-bis(4-methylthiophenyl) aniline) (CZ-STA). By replacing methoxy group on CZ-TA with methylsulfanyl group, CZ-STA exhibits a deeper HOMO level due to the π acceptor capability of sulfur atom. It can form $p\pi(C)-d\pi(S)$ orbital overlap where divalent sulfur accepts π -electron from the π -orbital of C=C bonds into its empty 3d-orbitals [29,30]. Besides, stronger Pb-S interaction will also lead to more efficient charge extraction and surface traps passivation [31]. With CZ-STA in hand, HOMO levels can be easily tuned by changing ratios of CZ-TA and CZ-STA. Since these two molecules have almost the same conjugated structure, they are preferred to form very compatible blends [32,33]. Meanwhile, the S atoms of CZ-STA and O atoms of CZ-TA may form S...O non-covalent interactions in solid state to enhance their packing in HTL layers [34]. PVSCs using CZ-TA: CZ-STA (90:10, weight ratio) as HTL have reached a champion PCE of 19.85% (18.32% for CZ-TA) under reverse voltage scan and a steadystate efficiency of 19.55% (16.36% for CZ-TA). Compared with pure CZ-

TA ($V_{OC}=1.044\,\mathrm{V}$, $J_{SC}=21.66\,\mathrm{mA\,cm^{-2}}$, FF = 81.0%), binary blend HTL system showed increased V_{OC} and J_{SC} without sacrificing FF ($V_{OC}=1.082\,\mathrm{V}$, $J_{SC}=22.51\,\mathrm{mA\,cm^{-2}}$, FF = 81.5%). Moreover, the cost for lab synthesis and purification of both CZ-TA (~ \$25/g) and CZ-STA (~ \$32/g) is much lower than that for spiro-OMeTAD (see cost calculation in Supporting information). It's worth noting that the CZ-TA:CZ-STA (90:10) blend HTL based devices can maintain over 82% of its initial PCE after storing for 60 days in air with a relative humidity around 50% without encapsulation. To the best of our knowledge, this is the first report of precisely tuning HTL energy level through a simple and cost-effective binary blend strategy.

2. Results and discussion

The synthetic route of CZ-STA is outlined in Fig. 1a and detailed synthesis can be found in Supporting information (SI). 1,3,6,8-Tetrabromo-9-octylcarbazole was obtained following the same procedure in our earlier report [26]. The details of synthesis of 4-methylthio-N-(4-methylthiophenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)aniline are outlined in SI [31,35]. After that, Pd-catalyzed Suzuki reaction was carried out to produce final CZ-STA with 78% yield. Simple column chromatography purification was adopted to acquire analytically pure CZ-STA for PVSC application, directly avoiding expensive sublimation process. The chemical structure of CZ-STA was

Download English Version:

https://daneshyari.com/en/article/7952382

Download Persian Version:

https://daneshyari.com/article/7952382

<u>Daneshyari.com</u>