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A B S T R A C T

To maximize the photovoltaic performance of perovskite solar cells (PVSCs）by developing new hole-transport
layer (HTL) materials, the precise tuning of their energy levels especially the highest occupied molecular orbital
(HOMO) is highly desirable. Here, a simple binary strategy for the first time is proposed to acquire ideal HOMO
level by optimizing the composition of binary blend HTLs including CZ-TA (HOMO=−5.170 eV) and CZ-STA
(HOMO=−5.333 eV). By adding 10wt% CZ-STA, the binary HTM (HOMO=−5.199 eV) based perovskite
solar cells achieve a maximum power conversion efficiency of 19.85% (18.32% for CZ-TA). The introducing of S
atom in CZ-STA not only downshifts HOMO level but also forms stronger Pb-S interaction with perovskites than
Pb-O in CZ-TA, leading to better device performance and reduced hysteresis. Importantly, the un-encapsulated
PVSCs using CZ-TA:CZ-STA (90:10, w/w) binary HTL exhibit good environment stability in ambient air,
maintaining over 82% of their initial efficiency after 60 days’ storage with a relative humidity around 50%.
Therefore, this strategy provides new insights on HTL development to push forward the progress of the emerging
PVSCs

1. Introduction

In the past few years, organic-inorganic hybrid perovskite solar cells
(PVSCs) have witnessed a rapid development due to their facile solution
fabrication, strong light absorption over a broad spectrum, long carrier
lifetime and diffusion length [1–5]. The certified power conversion
efficiency (PCE) has reached 22.7% from the initial 3.8% [6–10]. In a
typical PVSC device, electron transport layers (ETLs, n-type semi-
conductors) and hole transport layers (HTLs, p-type semiconductors)
are usually required to assist charge separation and transport [11–14].
State-of-the-art high-performance PVSCs commonly use organic mate-
rials especially 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamino)-9,9′-
spirobifluorene (spiro-OMeTAD) as HTL [15–18]. However, the com-
plex multi-step synthesis and expensive sublimation process greatly
limit its commercial application. Moreover, spiro-OMeTAD needs to be
exposed to ambient environment for a long-time oxidation process to
reach peak PCE. This is also a great drawback for industrial use.

Considering the disadvantages mentioned above, many efforts have
been made by researchers all over the world to replace spiro-OMeTAD

[9,19–24]. Malinauskas et al. [21] developed an effective HTL material
named V862 through two-step reaction and the PCE can reach 19.96%
with a total cost of only 23.11 $ g−1 (~ 500 $ g−1 for spiro-OMeTAD).
By simply replacing spiro core with fluorene–dithiophene, Saliba et al.
[25] synthesized FDT and PVSCs with this HTL showed an impressive
PCE of 20.2%. Meanwhile, the lab synthesis costs of FDT is only one
fifth of spiro-OMeTAD. Hou et al. [9] adopted Ta-WOx modified PDCBT
to reduce VOC losses and acquired a PCE as high as 21.2%. Recently, we
reported a simple carbazole-based HTL, CZ-TA, synthesized through a
facile one-step reaction with improved hole transport and reduced cost
(1/80 of spiro-OMeTAD) [26,27]. PVSCs using CZ-TA as HTL showed a
PCE of 18.32% with an impressive fill factor (FF) over 81% and good
device stability. Additionally, CZ-TA does not require oxygen doping,
eliminating the potential drop of PCE upon device encapsulation. The
main drawback of CZ-TA is the relatively low VOC (1.044 V), indicating
the mismatch of energy level [28]. It is well known that appropriate
energy-level alignment can facilitate charge extraction and transport,
leading to improved Voc Jsc and FF. However, in many cases, although
careful theoretical simulation and calculation have been carried out
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during HTL molecular design, the actual highest occupied molecular
orbital (HOMO) level of HTL may still not be at ideal position resulting
in Voc loss [19]. Thus, simple, precise and efficient tuning of HOMO
level is necessary for maximizing device performance when developing
new HTL materials.

Herein, we report a new strategy for linearly tuning HOMO level of
HTL materials to obtain maximum device performance. With CZ-TA as
an example, firstly, we have designed and synthesized 4,4',4'',4'''-(9-
octylcarbazole-1,3,6,8-tetrayl)tetrakis(N,N-bis(4-methylthiophenyl)
aniline) (CZ-STA). By replacing methoxy group on CZ-TA with me-
thylsulfanyl group, CZ-STA exhibits a deeper HOMO level due to the π-
acceptor capability of sulfur atom. It can form pπ(C)–dπ(S) orbital
overlap where divalent sulfur accepts π-electron from the π-orbital of
C=C bonds into its empty 3d-orbitals [29,30]. Besides, stronger Pb-S
interaction will also lead to more efficient charge extraction and surface
traps passivation [31]. With CZ-STA in hand, HOMO levels can be easily
tuned by changing ratios of CZ-TA and CZ-STA. Since these two mo-
lecules have almost the same conjugated structure, they are preferred to
form very compatible blends [32,33]. Meanwhile, the S atoms of CZ-
STA and O atoms of CZ-TA may form S…O non-covalent interactions in
solid state to enhance their packing in HTL layers [34]. PVSCs using CZ-
TA: CZ-STA (90:10, weight ratio) as HTL have reached a champion PCE
of 19.85% (18.32% for CZ-TA) under reverse voltage scan and a steady-
state efficiency of 19.55% (16.36% for CZ-TA). Compared with pure CZ-

TA (VOC =1.044 V, JSC =21.66mA cm−2, FF= 81.0%), binary blend
HTL system showed increased VOC and JSC without sacrificing FF (VOC

=1.082 V, JSC =22.51mA cm−2, FF= 81.5%). Moreover, the cost for
lab synthesis and purification of both CZ-TA (~ $25/g) and CZ-STA
(~ $32/g) is much lower than that for spiro-OMeTAD (see cost calcu-
lation in Supporting information). It's worth noting that the CZ-TA:CZ-
STA (90:10) blend HTL based devices can maintain over 82% of its
initial PCE after storing for 60 days in air with a relative humidity
around 50% without encapsulation. To the best of our knowledge, this
is the first report of precisely tuning HTL energy level through a simple
and cost-effective binary blend strategy.

2. Results and discussion

The synthetic route of CZ-STA is outlined in Fig. 1a and detailed
synthesis can be found in Supporting information (SI). 1,3,6,8-Tetra-
bromo-9-octylcarbazole was obtained following the same procedure in
our earlier report [26]. The details of synthesis of 4-methylthio-N-(4-
methylthiophenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenyl)aniline are outlined in SI [31,35]. After that, Pd-catalyzed Su-
zuki reaction was carried out to produce final CZ-STA with 78% yield.
Simple column chromatography purification was adopted to acquire
analytically pure CZ-STA for PVSC application, directly avoiding ex-
pensive sublimation process. The chemical structure of CZ-STA was

Fig. 1. (a) Synthetic route for CZ-STA. (b) Absorption spectra of CZ-STA film, the inset is cyclic voltagram of CZ-STA in 0.1mol L−1 n-Bu4NPF6 solution in acet-
onitrile. (c) DFT-calculated HOMO and LUMO electronic structures of CZ-STA.

X. Yin et al. Nano Energy 51 (2018) 680–687

681



Download English Version:

https://daneshyari.com/en/article/7952382

Download Persian Version:

https://daneshyari.com/article/7952382

Daneshyari.com

https://daneshyari.com/en/article/7952382
https://daneshyari.com/article/7952382
https://daneshyari.com

