Author's Accepted Manuscript Highly Efficient CO₂ Reduction on Ordered Porous Cu Electrode Derived from Cu₂O Inverse Opals Xiuzhen Zheng, Jin Han, Yu Fu, Yue Deng, Yangyang Liu, Yang Yang, Tao Wang, Liwu Zhang www.elsevier.com/locate/nanoenergy PII: S2211-2855(18)30158-7 DOI: https://doi.org/10.1016/j.nanoen.2018.03.023 Reference: NANOEN2571 To appear in: Nano Energy Received date: 4 January 2018 Revised date: 4 March 2018 Accepted date: 7 March 2018 Cite this article as: Xiuzhen Zheng, Jin Han, Yu Fu, Yue Deng, Yangyang Liu, Yang Yang, Tao Wang and Liwu Zhang, Highly Efficient CO ₂ Reduction on Ordered Porous Cu Electrode Derived from Cu₂O Inverse Opals, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.03.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** # Highly Efficient CO₂ Reduction on Ordered Porous Cu Electrode Derived from Cu₂O Inverse Opals Xiuzhen Zheng ^{a b}, Jin Han^a, Yu Fu^a, Yue Deng ^a, Yangyang Liu^a, Yang Yang ^a, Tao Wang ^a, Liwu Zhang ^{a,c*} ^aShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, P. R. China ^bCollege of Chemistry and Material Science, Huaibei Normal University, Anhui Huaibei 235000, P. R. China ^cShanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, Peoples' Republic of China ^{*}zhanglw@fudan.edu.cn. #### **Abstract** Acces, Electrochemical reduction of CO_2 to fuels is a promising way to reduce CO_2 emission and address the environment and energy crisis. However, the H_2 evolution reaction competes with CO_2 electrochemical reduction, which would lower the overall efficiency for carbonaceous products. In this work, a new electrocatalyst (cubic-shaped Cu inverse opals) was reported to reduce CO_2 to useful chemicals, which was synthesized from an electrochemical reduction of Cu_2O inverse opals. The Cu inverse opals could electrochemically reduce CO_2 to CO and COO with a Faradaic #### Download English Version: ## https://daneshyari.com/en/article/7952600 Download Persian Version: https://daneshyari.com/article/7952600 <u>Daneshyari.com</u>