Author's Accepted Manuscript Operando observations of RuO₂ catalyzed Li₂O₂ formation and decomposition in a Li-O₂ microbattery Chen Hou, Jiuhui Han, Pan Liu, Chuchu Yang, Gang Huang, Takeshi Fujita, Akihiko Hirata, Mingwei Chen www.elsevier.com/locate/nanoenergy PII: S2211-2855(18)30125-3 DOI: https://doi.org/10.1016/j.nanoen.2018.02.057 Reference: NANOEN2544 To appear in: Nano Energy Received date: 24 January 2018 Revised date: 24 February 2018 Accepted date: 27 February 2018 Cite this article as: Chen Hou, Jiuhui Han, Pan Liu, Chuchu Yang, Gang Huang, Takeshi Fujita, Akihiko Hirata and Mingwei Chen, Operando observations of RuO₂ catalyzed Li₂O₂ formation and decomposition in a Li-O₂ micro-battery, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.02.057 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. #### **ACCEPTED MANUSCRIPT** # Operando observations of RuO_2 catalyzed Li_2O_2 formation and decomposition in a $Li-O_2$ micro-battery Chen Hou^{a, b}, Jiuhui Han^b, Pan Liu^{a,*}, Chuchu Yang^b, Gang Huang^b, Takeshi Fujita^b, Akihiko Hirata^b, Mingwei Chen ^{a,b,c,d,*} ^aState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China ^bAdvanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ^cCREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan ^dDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21214, USA * The corresponding authors E-mail addresses: mwchen@jhu.edu (M.W. Chen), panliu@sjtu.edu.cn (P. Liu) #### **Abstract** RuO₂ displays excellent bifunctional catalysis towards the oxygen reduction and evolution reactions of Li-O₂ battery. Nevertheless, how the solid catalyst successively catalyzes solid Li₂O₂ formation and decomposition, confronting passivation and loss of RuO₂/Li₂O₂ contact, during discharging and charging remains a mystery. Here we report operando observations of RuO₂ catalyzed oxygen reduction and evolution reactions of Li₂O₂ by utilizing a liquid cell scanning transmission electron microscope. Upon discharging, RuO₂ obviously accelerates formation of soluble LiO₂ intermediates and acts as preferential sites of Li₂O₂ precipitation. During charging, the catalytic activation of RuO₂ takes place at electrolyte-RuO₂-Li₂O₂ triple-phase #### Download English Version: ## https://daneshyari.com/en/article/7952788 Download Persian Version: https://daneshyari.com/article/7952788 <u>Daneshyari.com</u>