
Author's Accepted Manuscript

Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping

Long Hu, Zhilong Zhang, Robert J. Patterson, Yicong Hu, Weijian Chen, Chao Chen, Dengbing Li, Chao Hu, Cong Ge, Zihan Chen, Lin Yuan, Chang Yan, Ning Song, Zhi Li Teh, Gavin J. Conibeer, Jiang Tang, Shujuan Huang

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(18)30056-9

DOI: https://doi.org/10.1016/j.nanoen.2018.01.047

NANOEN2483 Reference:

To appear in: Nano Energy

Received date: 11 November 2017 Revised date: 26 January 2018 Accepted date: 27 January 2018

Cite this article as: Long Hu, Zhilong Zhang, Robert J. Patterson, Yicong Hu, Weijian Chen, Chao Chen, Dengbing Li, Chao Hu, Cong Ge, Zihan Chen, Lin Yuan, Chang Yan, Ning Song, Zhi Li Teh, Gavin J. Conibeer, Jiang Tang and Shujuan Huang, Achieving high-performance PbS quantum dot solar cells by extraction improving hole through doping, Nano Energy, Ag https://doi.org/10.1016/j.nanoen.2018.01.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping

Long $Hu^{a,1}$, Zhilong Zhang^{a,1}, Robert J. Patterson^a, Yicong Hu^a , Weijian Chen^a, Chao Chen^b, Dengbing Li^b , Chao Hu^b , Cong Ge^b , Zihan Chen^a, Lin Yuan^a, Chang Yan^a, Ning Song^a, Zhi Li Teh^a , Gavin J. Conibeer^a, Jiang $Tang^{b,*}$, and Shujuan $Huang^{a,*}$

E-mail: jtang@mail.hust.edu.cn, sj.huang@unsw.edu.au

Abstract: PbS quantum dot solar cells are promising candidates for low-cost and highly efficient light harvesting devices owing to their solution processability and bandgap tunability. The p-type ethanedithiol (EDT) treated PbS quantum dot film plays an important role in PbS quantum dot solar cells with an n-i-p junction device structure. However, despite their sulphur-rich surface the EDT-treated PbS quantum dot film still have a relatively low carrier concentration. Higher carrier concentrations in this layer are desirable to extend depletion regions and improve hole extraction. Also imbalances in the charge mobility between the intrinsic layer and the p-type layer may lead to charge build-up at this interface. These obstacles limit further improvement of the device performance. Herein, we utilize EDTtreated Ag-doped PbS quantum dots as a p-type layer to fabricate PbS quantum dot photovoltaic cells. The carrier carrier concentration, mobility and band extrema as well as Fermi energy levels of Ag doped PbS quantum dot film can be tailored by tuning the Ag/Pb mole ratio from 0.0% to 2.0% during fabrication. The device performance has been significantly improved from 9.1% to 10.6% power conversion efficiency largely due to improvements in carrier concentration in the PbS-EDT layer through the incorporation of silver impurities.

^a Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia

^b Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

¹ contributed equally to this work.

Download English Version:

https://daneshyari.com/en/article/7952812

Download Persian Version:

https://daneshyari.com/article/7952812

<u>Daneshyari.com</u>