
FISEVIER

Contents lists available at ScienceDirect

Nano Energy

journal homepage: www.elsevier.com/locate/nanoen

Mixed-phase mullite electrocatalyst for pH-neutral oxygen reduction in magnesium-air batteries

Yifei Li^{a,1}, Xiaoxue Zhang^{a,1}, Hao-Bo Li^{b,1}, Hyun Deog Yoo^a, Xiaowei Chi^a, Qinyou An^a, Jieyu Liu^b, Meng Yu^b, Weichao Wang^{b,c,*}, Yan Yao^{a,d,*}

- a Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
- ^b Department of Electronics, Nankai University, Tianjin 300071, China
- ^c Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX 75252, USA
- ^d Texas Center for Superconductivity, University of Houston, Houston, TX 75204, USA

ARTICLE INFO

Article history: Received 12 May 2016 Received in revised form 11 June 2016 Accepted 18 June 2016 Available online 23 June 2016

Keywords: Oxygen reduction reaction Mullite pH neutral electrolyte Mg-air battery

ABSTRACT

Magnesium-air battery is a promising energy storage device because of its high theoretical voltage, high specific energy, low cost, and greater safety. Due to the passivation of Mg surface with $Mg(OH)_2$ in alkaline electrolyte (pH > 11) prevents further reaction of the anode, Mg-air battery typically works in pH-neutral aqueous electrolyte. However, developing electrocatalysts for pH-neutral oxygen reduction with high activity at low cost remains a significant challenge. Here, we report a mixed-phase mullite (SmMn₂O₅) electrocatalyst as an efficient substitute for Pt/C in pH-neutral oxygen reduction reaction (ORR). The mixed-phase mullite exhibits similar catalytic activity but superior stability to Pt/C in 1 M NaCl solutions. Density functional theory simulations reveal that the catalytic activity is correlated to the strength of p-d hybridization between octahedral Mn and lattice O in the mullite structure, which results in a moderate bond strength between adsorbed O atoms and square-pyramidal Mn dimer sites. The presence of CeO₂ phase also facilitates the adsorption and diffusion of oxygen atoms on mullite surface. Finally, the feasibility of utilizing mixed-phase mullite catalyst is demonstrated by fabricating Mg-air batteries to power a red light-emitting diode.

Published by Elsevier Ltd.

1. Introduction

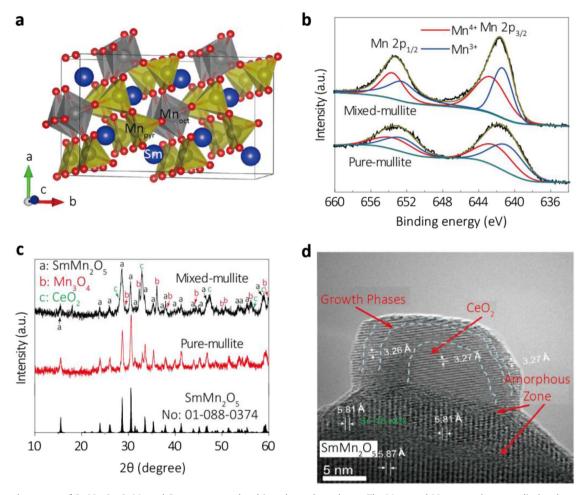
Driven by the ever-increasing demand of energy storage for renewable energy storage, metal-air batteries have attracted extensive attention due to the high theoretical energy density and environmental benignity [1–5]. Among many types of metal-air batteries, Li-air and Zn-air batteries have attracted the most attention [3,6–10], while magnesium-air batteries have been much less explored. Mg-air batteries could become a viable energy storage technology due to the low toxicity, high safety, and earth abundance of Mg. In fact, Mg-air batteries have been used commercially in reserve batteries, marine lifejacket lights, buoys, and undersea power supplies, etc. [11]. Although the present Mg-air battery is a primary battery, it could become mechanically

rechargeable by replacing used Mg anode and electrolyte with fresh ones or eventually become electrochemically rechargeable once major technical challenges could be successfully resolved [4].

Mg-air batteries involve following reactions:

Cathode:
$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
 (1)

Anode:
$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
 (2)


Overall:
$$2Mg + O_2 + 2H_2O \rightarrow 2Mg(OH)_2$$
 (3)

During the discharge process, Mg anode is oxidized to Mg²⁺ and O₂ is reduced to OH⁻ via a four-electron transfer reaction. In the alkaline electrolyte (pH > 11), Mg(OH)₂ forms a passivation layer on Mg surface, which prevents further reaction of the anode. When pH < 11, corrosion reaction takes place as the side reaction: Mg $+2H_2O \rightarrow Mg(OH)_2+H_2$. While Mg(OH)₂ has a low solubility in water with a K_{sp} of 1.5 \times 10⁻¹¹, which is large enough that it will partially dissolve to produce ions in the solution forming the suspension. Therefore Mg-air batteries require a pH-neutral aqueous electrolyte [4]. Due to the low lying redox potential of Mg/Mg²⁺ (-2.37 V vs. SHE), the theoretical voltage of a Mg-air battery is 3.1 V and the specific energy density is calculated to be

^{*} Corresponding authors at: Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA (Y. Yao) and Department of Electronics, Nankai University, Tianjin 300071, China (W. Wang).

E-mail addresses: weichaowang@nankai.edu.cn (W. Wang), yyao4@uh.edu (Y. Yao).

¹ These authors contribute equally to this work.

Fig. 1. (a) Crystal structure of SmMn₂O₅. O, Mn and Sm atoms are colored in red, purple, and grey. The Mn_{pyr} and Mn_{oct} complexes are displayed as yellow and grey polyhedra, respectively. (b) XPS spectra of Mn 2p peaks show Mn^{3+} and Mn^{4+} components. (c) XRD spectra of SmMn₂O₅ standard PDF (No: 01-088-0374), pure-, and mixed-mullite. SmMn₂O₅, spinel Mn_3O_4 , and fluorite CeO_2 phases are identified in the mixed phase. (d) HRTEM image reveals lattice fringes of SmMn₂O₅ (110) and CeO_2 (200) and amorphous region.

6.8 kWh/kg. However, in reality, the working voltage is usually below 1.4 V due to two main challenges: corrosion of Mg metal and sluggish kinetics of oxygen reduction in pH neutral electrolyte. The first challenge has been studied in many reports with deeper understanding of the corrosion mechanism and novel Mg-Zn-Al alloys to alleviate the corrosion [12,13]. However, less progress has been made for the latter challenge, i.e, developing efficient oxygen reduction reaction (ORR) catalysts that are highly active and selective under pH-neutral condition. Such a catalyst has also been found important in microbial fuel cells [14]. Since the kinetics of oxygen reduction strongly depends on the OH⁻ concentration of aqueous solution, ORR becomes very sluggish at neutral electrolyte when compared to the acid or alkaline electrolyte [15]. Noble metals such as platinum, palladium or iridium have the high catalytic performance and are traditionally used in Mg-air batteries [16,17].

Recently, low-cost alternatives have been actively explored to replace noble metals. Perovskite-based oxides, such as LaMnO₃ [18], CaMnO₃ [19], La_{1-x}Sr_xMnO₃ [20], Sr_{0.95}Ce_{0.05}CoO_{3- δ} [21], and LaSr₃Fe₃O₁₀ [22], attracted significant attention in the past few years. Most studies report high ORR catalytic activity in the alkaline electrolyte (0.1 M KOH) [23–25], however, their performance at pH-neutral electrolyte is not very well understood. A family of mullite oxide (SmMn₂O₅) has recently been reported by one of the authors with remarkable catalytic activity and durability towards NO_x oxidation [26]. Breaking O₂ molecules into atomic O on the catalyst surface is an essential step in NO_x oxidation process [26].

The same oxygen-bonding breaking might also be important in oxygen reduction, we are therefore inspired to explore the ORR catalytic activity with mullite oxide and explore its application in Mg-air batteries at pH-neutral electrolyte.

In this work, we synthesized the pure-phase (pure-mullite) and mixed-phase mullite (mixed-mullite) samples. The mixed-mullite exhibits similar catalytic activity but superior stability to Pt/C in 1 M NaCl solutions. Its performance compares favorably to Perovskite based catalysts. Density functional theory (DFT) simulations are employed to identify the catalytic mechanism for oxygen reduction and provides new insights to fine tune the Mn–O* bonding strength to optimize the rate limiting steps in ORR reactions.

2. Experimental

2.1. Preparation of pure- and mixed-mullite samples

All reagents (analytical grade) were purchased from Alfa-Aesar and used without further purification. Pure-mullite (SmMn2O5) was synthesized following Ref. [26]. To synthesize mixed- mullite, 7.7914 g of Mn(CH₃CO₂)₂·4H₂O, 0.4205 g of Sr(NO₃)₂, 1.7255 g of Ce(NO₃)₃·6H₂O, 0.8831 g of Sm(NO₃)₃·6H₂O and 0.2751 g of polyvinyl alcohol (PVA) (80% hydrolyzed) were dissolved in water. 15 mL of 25% TMAH was added until the pH reached 12. Then 0.2755 g of oxalic acid was dissolved in 2 mL of warm water (80 °C) in a separate container, and added to the above suspension.

Download English Version:

https://daneshyari.com/en/article/7953337

Download Persian Version:

https://daneshyari.com/article/7953337

<u>Daneshyari.com</u>